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Miller and Shettleworth (2007) used an associative model of instrumental choice to explain a confusing
pattern of results in the geometry learning literature. Dupuis and Dawson (in press) identified a structural
flaw in the Miller-Shettleworth (MS) model and suggested replacing it with an operant perceptron model
which can correctly reproduce some experimental results that the MS model does not. Here we
demonstrate that the error in the MS model can be easily corrected without altering any of the model’s
predictions by making it stochastic rather than deterministic. In addition, we show that the raw outputs
of the perceptron model cannot be interpreted as discriminative choices in an instrumental task without
first being normalized. We show that this additional step renders the results of the perceptron model
identical to those of the MS model in exactly those cases in which it has been claimed to correctly predict
results that the latter cannot.
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Recently, we (Miller, 2009; Miller & Shettleworth, 2007, 2008)
proposed an associative model of instrumental learning to explain
a series of experimental results on geometry learning (see Cheng &
Newcombe, 2005, and below). Our model (which we refer to as
MS) has been tested against a wide range of data and correctly
predicts the outcomes of many, but not all, geometry learning
experiments (Cheng, 2008; Cheng, Huttenlocher, & Newcombe, in
press). In response to a comment by Dawson, Kelly, Spetch, and
Dupuis (2008) we altered the model slightly (Miller & Shettle-
worth, 2008) without affecting any of its predictions. However,
Dupuis and Dawson (in press) have identified a more fundamental
flaw in the structure of the MS model that causes it to give
nonsensical results under certain parameter regimes. Here, follow-
ing the suggestions of Dupuis and Dawson, we correct this prob-
lem and demonstrate that the revised model gives qualitatively
identical results to the original in all cases. In addition, we show
that the alternative model suggested by Dupuis and Dawson, based
on a type of neural network called a perceptron, also gives qual-

itatively similar results (to our revised model) in all the situations
under which it has been tested.

The MS Model

In a geometry learning (sometimes called “reorientation”) task,
the subject is placed into an arena with a distinctive shape, usually
a rectangle. A reward is hidden in one corner of the arena and
various cues (referred to as features) may be placed at the corners
to disambiguate them. The subject must make a choice of which
corner to search at and receives the reward if it is correct. In a
rectangular arena, corners may either have a long or short wall to
their left—and vice versa on their right—and the arena’s geometry
therefore differentiates the correct corner and the corner diagonally
opposite it (the rotational corner) from the other two (geometri-
cally incorrect) corners.

Studies on a wide range of species (Cheng & Newcombe, 2005)
have shown that even when a feature indicates the correct corner,
individuals continue to make errors to the rotational corner, im-
plying that they also learn to use the geometry of the arena to
locate the reward (e.g., Cheng, 1986; Graham, Good, McGregor &
Pearce, 2006; Pearce, Graham, Good, Jones, & McGregor, 2006;
Wall, Botly, Black, & Shettleworth, 2004). Surprisingly, several
studies have shown that features neither overshadow nor block
learning about the geometry (Graham et al., 2006; Hayward, Good,
& Pearce, 2004; Kelly & Spetch, 2004a, 2004b; McGregor, Horne,
Esber, & Pearce, 2009; Pearce, Ward-Robinson, Good, Fussell, &
Aydin, 2001; Wall et al., 2004), which has led to suggestions that
geometry learning takes place in a dedicated geometric module
(Cheng, 2008). However, in other studies, features can block
learning based on the shape of the arena (Gray, Bloomfield,
Ferrey, Spetch, & Sturdy, 2005; Horne & Pearce, 2009; Kosaki,
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Austen, & McGregor, in press; Pearce et al., 2006). The MS model
shows how this confusing pattern of cue competition effects can
still be explained by ordinary associative learning, by taking into
account the fact that the animal controls its own experiences with
the cues, that is, that geometry learning experiments involve in-
strumental learning.

The MS model derives from the well-known Rescorla-Wagner
model (Rescorla & Wagner, 1972), in which changes in the
strength of association, V, between any experienced cue, A, and a
given unconditioned stimulus (US) are described by: �VA �
��(� � �V), in which � and � are learning rate parameters and �
represents the magnitude of the US. This learning rule is particu-
larly effective at simulating situations in which several concur-
rently presented cues compete for the limited amount of associa-
tive strength supported by the US (�). In an instrumental
procedure, such as the geometry learning task, the subject, by
choosing one of several locations, determines which cues it will
experience on a given trial. The MS model therefore assumes that
individuals learn only about those cues present at the chosen
location. Cues that do not co-occur will enter into learning sepa-
rately and, thus, compete with each other only indirectly. The MS
model modifies the Rescorla-Wagner learning rule accordingly:

�VA � �(� �VL), (1)

in which VL represents the sum of the associative strengths only of
those cues present at location L (corresponding to one of the
corners of the arena in a geometry learning experiment; note,
however, that the model could also be applied to the different
options in any operant paradigm). The learning rate parameter � is
set to 1, for simplicity (Miller & Shettleworth, 2007).

In attempting to create a deterministic version of the model,
which would represent “the mean performance of a large group of
animals” (Miller & Shettleworth, 2007, p. 194), we scaled the
change in associative strength of each cue by the probability of
choosing a location L in which it occurred, PL:

�VA � �(� �VL)PL (2)

The total change in the associative strength of a cue thus
depended on the summed probabilities of choosing each location
containing that cue. The probability of choosing any location L
was given by:

PL �
VL

�VL
, (3)

in which �VL represents the summed associative strengths of all
locations. Note that if certain cues occur at more than one location
(e.g., the cue representing the rewarded geometry in a rectangle)
their associative strengths will appear more than once in the
denominator of this function.

As Dupuis and Dawson (in press, Appendix) show, multiplying
Equation 1 by a location’s choice probability (PL) causes the
model, under certain parameter values, to give wildly fluctuating
associative strengths and choice probabilities outside the range 0 to
1. In an attempt to remedy this problem, we (Miller & Shettle-
worth, 2008) altered the model’s choice function (Eq. 3) using
what Dupuis and Dawson refer to as the “positiveness correction.”
As these authors rightly point out, because the structure of Equa-

tion 2 remained unchanged, this did not solve the problem. Dupuis
and Dawson further suggest that, due to this flaw, the MS model
should be abandoned. We, however, believe that the error in
Equation 2 can be remedied quite simply and demonstrate below
that the corrected model retains all the explanatory power and
structural simplicity of the original.

A Revised Model

The error in Equation 2, as Dupuis and Dawson (in press)
correctly point out, results from scaling the associative strengths
by the choice probabilities (PL), which are themselves a function
of the associative strengths at each location. The simplest solution
to this is to remove PL from the equation, reverting it to the form
of Equation 1. However, we still require that the associative
strengths of cues only change when they are experienced. Thus,
the choice probabilities (Eq. 3) will still determine which location
is chosen, which in turn will determine whether or not a given
cue’s associative strength is updated. This is now done stochasti-
cally. The revised model then operates as follows.

At the start of each trial, the choice probabilities for each
location are calculated, using Equation 3. To keep the choice
probabilities within the required range, we retain a form of “pos-
itiveness correction”: if PL of any location is greater than 1 or
smaller than 0, it is set to 1 or 0, respectively. Note, however, that
the positiveness correction only ensures that the probability of
choosing any given location will fall between 0 and 1. The sum of
the probabilities for all locations can still exceed 1. In most
geometry learning studies, individuals make only one choice per
trial (indeed, in most operant tasks a trial is defined by the
occurrence of a single choice), and we therefore normalize the
choice probabilities of all locations such that they sum to 1 before
determining the simulation’s choice on any trial:

PL �
VL ⁄ �VL

�i (Vi ⁄ �Vi)
, (4)

in which Vi represents the summed associative strength of the cues
at any location i. This is comparable with asserting that the subject
considers all locations before making a choice. Though this may
not always be true, we consider it the simplest assumption and
likely the optimal strategy. The choice made by the simulation on
that trial is determined randomly, weighted by the relative choice
probabilities of all the locations, such that the distribution of
choices reflects the relative attractiveness of each location.1 On
making a choice, the associative strengths of all the cues present at
that location are updated using Equation 1. The updated associa-
tive strengths are subsequently used to determine the choice on the
next trial, using Equation 4, and so on. Because the choice stage of
this process is stochastic, we repeat the simulation many times and
present averaged results.

1 Computationally, for each trial, a random number in the interval [0, 1)
is generated and compared with the discrete cumulative distribution of PL

across all locations, F(PL). For example, for a simulation with four equally
attractive locations, F(PL) � {0.25, 0.5, 0.75, 1}. The simulation then
chooses the location corresponding to the smallest member of F(PL) larger
than the random number (e.g., if the random number was 0.6, the simula-
tion would choose the third location in the example above).
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The revised model accurately reflects the intentions (and verbal
description) of the original MS model but does not suffer from any
of the mathematical flaws identified by Dawson et al. (2008) or
Dupuis and Dawson (in press). Below we simulate the two sce-
narios also simulated by Dupuis and Dawson and show that the
revised model makes the same predictions, qualitatively, as the
original MS model.

The Perceptron Model

After explaining the errors in the MS model, Dupuis and Daw-
son (in press) suggest an alternative model to simulate geometry
learning experiments. First, they suggest using a logistic choice
function, which cannot return probabilities outside the range 0 to
1. In the notation of the MS model this becomes:

PL �
1

1 � e�VL
. (5)

This suggestion can easily be incorporated into the revised MS
model, by replacing Equation 4 with Equation 5, rendering the
structure of the model identical to that of the perceptron model
(Dawson, 2008). However, the values returned by this choice
function, like those given by Equation 4, must still be normalized
to obtain actual choice probabilities. In other words, though PL for
each location is now guaranteed to be between 0 and 1, the sum of
the probabilities over all locations may still exceed 1. If subjects
consider all alternatives before making a single choice, the final

probability of choosing any location L should be
pL

�i pi

. Below we

run each of our simulations with both choice rules and show that
they give qualitatively similar results.

In addition to the logistic choice rule, Dupuis and Dawson (in
press) suggest using a perceptron, a simple neural network, to
model the reorientation task. They suggest that the perceptron,
which has been shown to correctly reproduce some geometry
learning data (Dawson, Kelly, Spetch, & Dupuis, 2010), can cor-
rectly predict Horne and Pearce’s (2010) experimental results,
which the MS model fails to do. Below we show that the percep-
tron model does not correctly reproduce these results if its outputs
are interpreted in a manner consistent with the experimental par-
adigm and that the perceptron and revised (and original) MS
models both predict the same outcome, incorrectly.

Simulation Results

The simulations below were performed similarly to those re-
ported in Miller and Shettleworth (2007, 2008), with the exception
that the revised version of the model, presented above, was used.
Simulations were run using both Equations 4 and 5 as the choice
rule. Each simulation was trained for 30 time steps and the results
of 500 replications of each simulation were averaged together. In
all simulations the saliences of all cues, �, were set to 0.15 (as in
Miller & Shettleworth, 2007). However, as the aberrant behavior
of the original MS model only emerged at high values of �, we
also tested each simulation at a range of values of � up to 1, to
ensure it did not give nonsensical results.

Wall et al. (2004), Experiment 3

Wall et al. (2004, Experiment 3) attempted to block learning
about the geometry of their rectangular arena with a large black
feature placed at the correct (rewarded) corner. Individuals in the
Blocking group were first trained to associate the feature with a
reward in a square arena (in which all corners provide identical
geometric information). Then, both the Blocking and a Control
group were trained to find the reward in one corner of a rectangular
arena containing the same feature. At the end of training, both
groups were tested in the rectangular arena without the feature. If
previous experience with the feature blocked learning about the
geometry in the Blocking group, they would be expected to do
worse at test than the Control group. However, the authors found
no difference between the groups.

This result is correctly predicted by the original MS model
(Miller & Shettleworth, 2007), though the model misbehaves if �
is set higher than about 0.7 (Dawson et al., 2008; Dupuis &
Dawson, in press), as well as by the perceptron model (Dupuis &
Dawson, in press). We simulate the same experiment using the
revised MS model and show that it also reproduces the results.

The simulation involves four cues: a context cue present at all
locations (B); the geometry of the correct and rotational corners
(G); the geometry of the incorrect corners (W); and the feature at
the correct corner (F). The associative strength of the feature (VF)
in the Blocking group is initialized at 0.3, to represent their initial
phase of training; the associative strength of the context cue (VB)
is started at 0.1; all other cues have initial associative strengths of
0 (see Miller & Shettleworth, 2007, for details of the simulation
procedure).

Figure 1 shows the results of the simulation using the original
MS choice rule (Eq. 4). Both the associative strengths (Figure 1 A,
C) and the choice probabilities (Figure 1 B, D) are virtually
identical to those reported by Miller & Shettleworth (2007, Figure
1) and fit the experimental data well (Wall et al., 2004, Figure 4).
When the model is tested (by removing the feature), the Blocking
group is predicted to choose the geometrically correct corners 87%
of the time; the Control Group 89% of the time. These results are
also congruent with those of the original model and the experi-
mental data. The simulation also correctly predicts the lack of
blocking when run using the logistic choice rule (Eq. 5), though
the results for both groups are far less extreme (Blocking Group
52.5% correct; Control Group 53.4% correct).

The revised model is also robust to changes in the value of �.
For example, when run with � � 0.65 (for all cues) for 10 training
trials, the simulation predicts perfect performance (100% correct)
by both groups. Interestingly, if � is increased further or the
simulation is run for longer, the performance of both groups at test
declines toward chance levels (additionally, all the associative
strengths begin to fluctuate when � exceeds about 0.85 but this
does not affect the choice probabilities). This is because, with
increased or faster learning, the feature—which is the best predic-
tor of reward during training—usurps most of the associative
strength, causing the associative strength of the correct geometry
to decrease. At test, with the feature removed, the model suggests
that the weakening of geometric cues will lead to worse perfor-
mance by both groups than if learning was slower or more brief
(formally, all the cues other than the feature become conditioned
inhibitors and, at test, Eq. 4 returns a probability of 0 for all
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locations, implying random choice). In other words, a high � or a
large number of training trials will eventually result in the feature
blocking (or overshadowing, in the Control group) geometric cues.
A similar prediction was made by Miller and Shettleworth (2007)
and experimentally confirmed by Horne and Pearce (2009; see also
Kosaki et al., in press and McGregor et al., 2009).

Horne and Pearce (2010), Experiment 2a

Next we simulate the superconditioning experiment conducted
by Horne and Pearce (2010, Experiment 2a), also modeled by
Dupuis and Dawson (in press). In a superconditioning paradigm, a
cue gains additional associative strength by being paired with a
conditioned inhibitor. In the first phase of the experiment, Horne
and Pearce trained two groups of rats to find the escape platform
in a rectangular water maze using only the geometry of the maze
(platforms were located at both geometrically correct corners). In
Phase 2, identical trials to Phase 1 were interspersed with trials on
which a feature was present at both geometrically correct corners
and there was no platform in any corner. This training regime
should result in the feature becoming a conditioned inhibitor. In
the third and final phase, rats in the Experimental group were
trained in the rectangular arena with the feature and a platform
present at both correct corners. In this phase, previously learned
geometric cues, paired with the (inhibitory) feature, are expected
to gain additional associative strength. A Control group was
trained with a novel feature at the correct corners. When tested in
the absence of the features at the end of training, rats from the
Experimental group spent more time in the geometrically correct

corners than rats from the Control group, demonstrating supercon-
ditioning of the geometric cues by the inhibitory feature.

Horne and Pearce (2010) attempted to simulate their results using
the original MS model and found that the model incorrectly predicted
a lack of superconditioning, as does the revised model presented here.
Figure 2 shows the results of the revised model for the three phases of
the experiment. The results are qualitatively identical to those pre-
sented by Horne and Pearce (2010, Figure 11) and similar to the
simulation of this experiment by Dupuis and Dawson (in press, Figure
5). In the final phase, the model predicts that the correct geometry will
gain additional associative strength in the Experimental, but not the
Control, group. As a result, at test, Equation 4 returns higher raw
probabilities for the correct corners in the Experimental group (Ex-
perimental 1.0; Control 0.94). However, when these values are nor-
malized to give actual choice probabilities the model predicts a slight
advantage for the Control group (Experimental 0.90 correct; Control
0.95). These results are comparable with those obtained by Horne and
Pearce (2010) using the original MS model. Horne and Pearce’s
experiments were performed in a water maze, in which subjects make
multiple choices until they locate the submerged platform (the re-
ward), and the authors therefore used the multiple-choice version of
the original MS model (see Miller & Shettleworth, 2007) to simulate
their data. We note that using a stochastic version of the multiple-
choice model, constructed along the same lines as the revised single-
choice model presented above, gives qualitatively identical results to
those presented here.

Dupuis and Dawson (in press) claim that the perceptron model,
unlike both versions of the MS model, is able to correctly reproduce

Figure 1. Simulation results for the training phase of the Wall et al. (2004) task. A, C – associative strengths;
B, D – choice probabilities. VB – associative strength of the context cue; VG – the correct geometry; VW – the
incorrect geometry; VF – the feature cue; Correct – the rewarded corner; Rotational – the diagonally opposite
corner; Incorrect – the geometrically incorrect corners. A, B show the results for the Blocking group; C, D for
the Control group.
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Horne and Pearce’s (2010) experimental results. The authors present
the activations—the outputs of Equation 5—of their perceptron
model at testing: 0.998 for the Experimental group and 0.970 for the
Control group. However, as noted above, the outputs of Equation 5
(or of Eq. 4) cannot be considered choice probabilities in a geometry
learning task, because the sum of the responses to the different
locations may exceed 1 (as in the present case). Unfortunately, the
authors do not report the activations to the incorrect corners. We
therefore recreated the perceptron model to explore whether, when
activation levels are correctly converted into choice probabilities, it
still predicts superconditioning in this scenario. Using the same pa-
rameter values reported by Dupuis and Dawson, we find the following
activation levels at test: Experimental group, 0.998 to the geometri-
cally correct corners, 0.090 to the incorrect corners; Control group,
0.985 to the geometrically correct corners, 0.068 to the incorrect
corners. Note that the activations to the correct corners are higher in
the Experimental group, as reported by Dupuis and Dawson. How-
ever, the activations to the incorrect corners are also higher and, when
these values are normalized to extract choice probabilities, the simu-
lation predicts 92% correct choices in the Experimental group versus
94% correct in the Control group. In other words, the perceptron
model does not reproduce the superconditioning effect observed by
Horne and Pearce (2010). Indeed, the higher activations but lower
choice probabilities in the Experimental group are identical to the
results of the revised (and original) MS model.

Activations and Choice Probabilities

The discrepancy between the activations of the perceptron (the
outputs of Eq. 5) and normalized choice probabilities reveals the
problem with using the perceptron to simulate geometry learning.
Perceptrons return conditional probabilities, that is, likelihoods of

response given a certain set of input stimuli. However, they do not
explicitly compare options (locations) with each other. Perceptron
activations have been considered comparable with actual response
rates (Dawson, Dupuis, Spetch, & Kelly, 2009) but, even then, the
model is presented with a single option at a time and returns a
probability of response to that option only. Other options are
evaluated independently (Dawson, 2008).

To clarify why this is important when simulating geometry
learning results, we perform the following thought experiment: A
subject is trained to find a reward in two geometrically equivalent
corners of a rectangular arena, both marked by identical features
(some geometry learning experiments have used a similar training
setup; e.g., Hayward et al., 2004). In this situation, geometric cues
and the features are equally good predictors of the reward location
and, according to the MS model, should both gain associative
strength. After training, the subject is tested in the same rectangu-
lar arena either with no feature present or with one feature placed
at one of the geometrically incorrect corners.

We simulate this scenario using both the revised MS model and
the perceptron, using the same parameter values as for the simu-
lations above. The MS model predicts that when tested in a bare
rectangular arena subjects should search in the geometrically cor-
rect corners 84% of the time. When the feature is added to one of
the geometrically incorrect corners the model predicts that subjects
search at that corner 25% of the time and at the geometrically
correct corners only 68% of the time. In other words, the attractive
feature reduces the probability of geometrically correct responses.
Empirical results supporting this prediction have been reported in
situations in which features are moved between training and test-
ing (e.g., Cheng, 1986; Kelly, Spetch, & Heth, 1998; Kelly &
Spetch, 2004b; Sovrano, Bisazza, & Vallortigara, 2003).

Figure 2. Simulation results for the superconditioning task (Horne & Pearce, 2010). Only the associative
strengths for all cues are shown. A – Phase 1, for both groups; B – Phase 2, for both groups; C – Phase 3 for
the Experimental group; D – Phase 3 for the Control group. See text for details.
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We next simulate the same scenario using the perceptron
model.2 When tested in a bare rectangular arena, the perceptron
returns activations of 0.81 to the geometrically correct corners.
However, as explained above, this value depends only on the
associative strengths of the cues at those locations. When the
attractive feature is added to one of the geometrically incorrect
corners, the perceptron still returns an activation of 0.81 to the
geometrically correct corners. In other words, interpreting the
activations of the perceptron as choice probabilities—as Dupuis
and Dawson (in press) do—suggests that adding the feature to a
geometrically incorrect corner will not change the likelihood of
visits to the geometrically correct corners. As noted above, this is
contradicted by experimental results. Of course, the activations of
the perceptron to the geometrically incorrect corners do change
(0.03 when the arena is bare; 0.21 when the feature is present), but
these changes cannot affect the activation to the correct corners. If,
as we suggest above, the activations are normalized to obtain
choice probabilities, the perceptron’s predictions are identical to
those of the revised MS model (bare arena: 96% geometrically
correct; with feature: 87% geometrically correct, 11% to the corner
with the feature).

Conclusion

Dupuis and Dawson (in press) identified a flaw in the mathe-
matical formulation of the original MS model (Miller & Shettle-
worth, 2007, 2008). We show above that this error in the model
can be easily corrected by making the model stochastic rather than
deterministic and retaining both its performance function (Eq. 4)
and its learning rule (Eq. 1). The revised model gives qualitatively
identical results to the original MS model in all the cases in which
we have tested it and is as straightforward to interpret as the
original (code for the revised model is available from the corre-
sponding author). In addition, we show that the perceptron model
cannot be used in its current form, as suggested by Dupuis and
Dawson (in press), to simulate geometry learning experiments,
because the outputs of the model do not correspond to the kinds of
discriminative choices that subjects in these experiments are re-
quired to make. It is possible to convert the outputs of the percep-
tron into choice probabilities but, when this is done, the predictions
of the model align perfectly with those of the MS model (see also
Dawson, 2008).

The MS model has been empirically tested several times (e.g.,
Horne & Pearce, 2009, 2010, 2011; McGregor et al., 2009; Miller,
2009; Sturz & Kelly, 2009) and the model fails to reproduce some
of these data, including the superconditioning task simulated above
(Horne & Pearce, 2010). Additional work is required to determine
whether the perceptron model can correctly simulate the results of
some of the studies in which the MS model fails. This work must
begin, in our opinion, by showing that the outputs of the percep-
tron can be converted into discrete choices of the kind that animals
in geometry learning tasks perform. Such a demonstration would
indeed suggest that the perceptron provides a more useful frame-
work for understanding these data than the MS model.

2 Perceptron simulations were run using Michael Dawson’s “Rosenblatt”
program, available at http://www.bcp.psych.ualberta.ca/~mike/Software/
Rosenblatt/index.html Simulations were run using the same parameters as
Dupuis and Dawson (in press) used for their superconditioning simulation:

5,000 training sweeps; learning rate, 0.05; bias held constant at 0; all
weights initialized at 0.
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