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Abstract
Collective behaviors are observed throughout nature, from bacterial colonies to human societies. Important theoretical break-
throughs have recently been made in understanding why animals produce group behaviors and how they coordinate their
activities, build collective structures, and make decisions. However, standardized experimental methods to test these findings
have been lacking. Notably, easily and unambiguously determining the membership of a group and the responses of an individual
within that group is still a challenge. The radial armmaze is presented here as a new standardizedmethod to investigate collective
exploration and decision-making in animal groups. This paradigm gives individuals within animal groups the opportunity to
make choices among a set of discrete alternatives, and these choices can easily be tracked over long periods of time. We
demonstrate the usefulness of this paradigm by performing a set of refuge-site selection experiments with groups of fish.
Using an open-source, robust custom image-processing algorithm, we automatically counted the number of animals in each
arm of the maze to identify the majority choice. We also propose a new index to quantify the degree of group cohesion in this
context. The radial arm maze paradigm provides an easy way to categorize and quantify the choices made by animals. It makes it
possible to readily apply the traditional uses of the radial armmaze with single animals to the study of animal groups.Moreover, it
opens up the possibility of studying questions specifically related to collective behaviors.

Keywords Collective behavior . Collective decision-making . Group cohesion . Fission–fusion societies

A key question in the study of collective behavior is that of
understanding how multiple, possibly unrelated, individuals
can make efficient consensus decisions despite often
possessing incomplete or conflicting information. Although

important theoretical breakthroughs have occurred during
the last 15 years (e.g., Couzin, Krause, Franks, & Levin,
2005; Couzin et al., 2011; Leonard et al., 2012; Ward
Sumpter, Couzin, Hart, & Krause, 2008), there is still a lack
of standardized experimental methods with which to empiri-
cally test these findings.

Occurring across a wide range of species and ecological con-
texts, fish schooling is a phenomenon of long-lasting interest in
ethology and ecology that has also attracted interest from the
fields of statistical physics and theoretical biology as an example
of self-organized behavior (U. Lopez, Gautrais, Couzin, &
Theraulaz, 2012). To study these dynamic collective processes,
it is necessary to identify groups and subgroups, as well as to
take into account the possible effects of environmental hetero-
geneity on the outcome of the collective behavior. Though
shoals and schools have qualitative (Pitcher, 1983) and quanti-
tative definitions (Delcourt & Poncin, 2012), determining mem-
bership in a group, especially using a quantitativemethod, is still
under debate (Miller & Gerlai, 2008, 2011; Quera, Beltran, &
Dolado, 2011; Quera, Beltran, Givoni, & Dolado, 2013). For
instance, in the study of fission-fusion processes, it is necessary
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to determine whether an individual belongs to one group or
another, or is isolated. We therefore need an approach in which
each individual must make a clear choice to join, stay with, or
leave a group, so that the delimitation of the group is
unambiguous.

To achieve these objectives, we propose the use of the radial
arm maze as a new standardized tool to investigate collective
exploration and decision-making. A radial arm maze consists of
a number of arms radiating away from a central zone (see Fig.
1). During a typical experimental trial, a single animal is intro-
duced into the central zone (or one of the arms, depending on the
experimental protocol), and allowed to move freely into one of
the arms, thus making an easy-to-classify categorical choice.
After each choice, the tested animal can return to the central
zone and select a new arm from the available alternatives (again,
depending on the experimental protocol and question). This
experimental setup allows the animal to sample—possibly with
replacement—from a known set of well-defined alternatives
(Olton, Collison, & Werz, 1977; Olton & Samuelson, 1976).

Our first contribution in this article is to illustrate how the
radial armmaze paradigm can be used for the study of collective
behaviors for the first time, as it has been previously for single
subjects (Hodges, 1996; Olton & Samuelson, 1976; Vorhees &
Williams, 2014). Our paradigm permits observing an animal
group for extended durations, during which the individuals can
make numerous successive individual and collective choices
without having to be removed from the maze or interact with
the experimenter in any way, potentially generating a large
amount of detailed data. The radial arm maze can also be used
to explore classic themes, previously studied with solitary ani-
mals (spatial learning, discrimination of cues, exploratory strat-
egies, or algorithmic behaviors), but can now also become a
convenient tool to study other phenomena that are specific to
social and collective behavior (consensus decision-making,
fission-fusion dynamics, etc.).

As an alternative to video multitracking, our second pur-
pose is to suggest a simplified way to investigate collective
exploration and decision-making in animal groups. We pro-
pose to characterize group behavior by observing the dynam-
ical distribution of the individuals across a structured, discrete

space. We describe how to simply determine the group’s co-
hesion by counting the number of fish in each section of the
maze. We use majority transitions between arms to character-
ize collective dynamics and introduce a new index to quantify
the degree of group cohesion in the discrete structure of the
radial arm maze. Finally, we demonstrate the use of this meth-
odology by performing simple refuge-site selection experi-
ments with groups of fish.

The proposed approach goes beyond simply reusing an
existing paradigm used almost exclusively with isolated ani-
mals. It introduces quantification and analysis methods spe-
cifically crafted for group behavior, and therefore offers a new
and standardized way to study collective behavior.

Methodology

Radial arm maze

A radial arm maze is usually composed of three to eight arms
radiating away from a central zone, though this number can be
much higher (e.g., 48 arms in Cole & Chappell-Stephenson,
2003). It is a well-established paradigm in experimental psy-
chology since the pioneering research of Tolman, Ritchie, and
Kalish (1946) and Olton and Samuelson (1976). It is used in
cognitive research to understand exploratory behaviors (Olton
et al., 1977), algorithmic behaviors (Hughes & Blight, 1999),
spatial learning (Brown & Giumetti, 2006), social learning
(Brown, Prince, & Doyle, 2009), the ability to discriminate
different types of—often visual—cues (Colwill, Raymond,
Ferreira, & Escudero, 2005), learning ability and underlying
brain structures (Crusio & Schwegler, 2005; J. C. Lopez,
Bingman, Rodriguez, Gomez, & Salas, 2000), and
neurotoxicology (Creson, Woodruff, Ferslew, Rasch, &
Monaco, 2003; Walsh & Chrobak, 1987).

Radial arm mazes are used mostly with isolated animals
such as rodents, pigs, rabbits, hedgehogs, dogs (Lipp et al.,
2001; Macpherson & Roberts, 2010; Wilkie & Slobin, 1983),
a number of bird species (Lipp et al., 2001; Pleskacheva,
2009), and reptilians (Mueller-Paul, Wilkinson, Hall, &

Fig. 1 (Left) The six-arm radial maze seen from above, with zones
denoted Arms 1–6 and the central zone. (Middle) Example of automatic
counting of the number of fish in each zone. (Right) The same image with

each arm labeled relative to the arm M containing the majority of the fish
(n > 5). L1, L2, R1, R2, andOp are, respectively, the first and second arms
to the left (L) or the right (R) of M, and the arm opposite M
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Huber, 2012; Wilkinson, Coward, & Hall, 2009). Several fish
species have also been tested in these mazes: Siamese fighting
fish (Betta splendens; Roitblat, Tham, & Golub, 1982),
fifteen-spined sticklebacks (Spinachia spinachia) and
corkwing wrasse (Crenilabrus melops; Hughes & Blight,
1999, 2000), goldfish (Carassius auratus; Washizuka &
Taniuchi, 2006), and zebrafish (Danio rerio; Al-Imari &
Gerlai, 2008; Sison & Gerlai, 2010; Washizuka & Taniuchi,
2007). However radial arm mazes have only rarely been used
to test the collective performance of groups of animals (see
Brown et al., 2009; Miller, Garnier, Hartnett, & Couzin,
2013). In Brown et al. (2009), a pair of rats were tested to
study social influence on individual choice. In Miller et al.
(2013), fish schools were tested in repeated trials of short
duration, recording only the first choice of the group among
three options. Here, for the first time we present a study of
multiple successive choices of a group in a radial arm maze,
over an extended period of time, without the animals being
removed from the maze between choices.

One of the strengths of the radial armmaze paradigm is that
it allows the observer to determine without ambiguity that an
animal has made a decision by simply recording whether or
not the animal has entered one of the arms of the maze.We can
take advantage of the simplicity of this measure to determine
the location and size of all the groups in the maze at any time
during an experiment.

Tracking group dynamics

During a collective decision-making event, it is important to
(1) estimate when the individuals in a group have made a
decision, and (2) determine the strength of the consensus
amongst the individuals composing the group. For
Condition 1, we propose to simply track the movements of
the majority of the group between the different arms of the
maze, as a way to significantly simplify the collective dynam-
ics (note that other thresholds can be chosen, and that individ-
ual movements can be tracked as well, depending on the study
needs). For Condition 2, we introduce a new cohesion index
that measures how dispersed the animals are in a discretely
partitioned environment, here the radial arm maze.

Majority transitions A majority is reached when half of the
individuals plus one are located in a single arm of the maze.
The central zone is not considered a valid choice for this
purpose. When a majority is reached in a given arm, we call
this arm the Bmajority arm.^ At any given moment, as long as
a majority exists, we can define the position of the other arms
relative to the majority arm by counting the number of arm
openings to the left or right of the majority arm. For instance,
for a six-arm radial maze, we label the majority arm M, the
first and second arms to the left (L) or to the right (R) ofM, L1,
L2, R1, R2, and the arm directly opposite to M, Op (Op only

exists in mazes with an even number of arms; see Fig. 1). This
classification method can easily be extended to mazes with
different numbers of arms.

A transition of majority is defined as a movement of the
majority from a given arm to a different one; a transition
period is defined as a period of time between the end of a
majority (in an arm) and the beginning of the next majority
(in the same or another arm; Fig. S1). The study of majority
transition is typically an analysis of the temporal sequence of
majority states, without taking into account the durations of
these states (one majority episode is defined from the begin-
ning to the end of one majority in an arm). During transition
periods, no majority state is observed. We can also analyze
second- (or higher-) order transitions to evaluate potential ste-
reotypic motion patterns (see Figs. S2 and S3 for some
theoretical examples). A transition of the first order is the
direct transition of a majority from one arm to another arm;
a second-order transition consists of two sequential majority
transitions and records the second next majority arm, and so
on for higher orders. For instance, second-order transitions
allow us to determine whether the majority returns to the orig-
inal majority arm after exploring another one (Fig. S3). In
some analyses, it could be interesting to filter cases in which
transition has been aborted—for example, one or several in-
dividuals have moved into the central zone, inducing the loss
of the majority, and then returned rapidly to their initial arm,
restoring the majority in that arm. We therefore define a first-
order Bmajority transition without repetition,^ in which we
ignore first-order transitions between the same arm. For
higher-order transitions, repetitive identical majorities (i.e.,
consecutive majorities in the same arm) are considered a sin-
gle element in the state sequence (see Fig. S2). For example,
the second-order transition in the sequence A–B–B–C is A–C.

A new cohesion index for the radial mazeWe propose a new
cohesion index, Ic, that measures the ability of animals to
form cohesive groups in a radial maze. We created Ic for
radial arm mazes, but it can also be applied to other types
of mazes or arenas divided into discrete zones. This index
is an alternative to traditional methods for measuring
group cohesion based on the relative topological or metric
locations of the individuals composing the group
(reviewed in Delcourt & Poncin, 2012). These traditional
measures are well adapted to homogeneous open-field
arenas but make little sense in more structured environ-
ments such as radial mazes. For instance, two individuals
located in two contiguous arms of a radial maze can be
close to each other without being able to directly perceive
or interact with each other. Many natural environments
contain barriers or other impediments to movement that
impose a structure (which the radial maze may simulate),
making our method potentially more useful than traditional
measures even in the wild.
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We define Dc as the Euclidean distance (norm of the resul-
tant vector) in a multidimensional space between the numbers
fi of individuals in each zone of the maze (arms + central
zone). All variables (dimensions) are considered independent-
ly from each other.

DC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i¼1
f ið Þ2

s

ð1Þ

Dc varies as a function of the partition of the number of
fish. This partition is dependent on the total number of indi-
viduals, N, and the number of zones, Z (see Supplementary
Table 1 in Appx. S1). Partition, composition, and the number
of possible partitions are described in detail in Appendix S1.

Dmin is the value of Dc for the least cohesive configuration
possible (i.e., the most homogeneous distribution of the ani-
mals across the possible zones). For instance, for ten individ-

uals with ten zones, Dmin =
ffiffiffiffiffi

10
p

. However, if the number of
zones is less than N, Dmin is larger. For instance, for ten indi-

viduals in seven zones,Dmin =
ffiffiffiffiffi

16
p

for the partition 2/2/2/1/1/
1/1, which corresponds to the most homogeneous distribution
of the animals in this case.

The cohesion index Ic is computed as follows:

Ic ¼ DC−Dmin

N−Dmin
ð2Þ

Ic varies between 0 and 1, increasing as the number of
occupied zones decreases and the groups are larger. For in-
stance, Ic = .46 for the partition 6/3/1, whereas Ic = .44 for the
partition 6/2/2. When all individuals are located in one zone,
Dc = N, so Ic = 1. In contrast, Ic = 0 when the group is as
dispersed as possible. Ic cannot be calculated if there is just
one zone.

The R code details and more examples to calculate parti-
tions, Dc, Dmin, and Ic are presented in Appendix S1.

Case study

Study species We performed a series of simple resting-site
selection experiments in order to demonstrate the usefulness
of the radial arm maze paradigm for the study of animal
groups. For these experiments, we used golden shiners
(Notemigonus crysoleucas, Cyprinidae), a highly gregarious
fish species (Berdahl, Torney, Ioannou, Faria, & Couzin,
2013; Couzin et al., 2011; Katz, Ioannou, Tunstrøm, Huepe,
& Couzin, 2011; Tunstrøm et al., 2013) native to the freshwa-
ters of eastern North America. This fish is regularly used in
collective-behavior studies to investigate collective decision-
making processes (Berdahl et al., 2013; Couzin et al., 2011;
Leblond & Reebs, 2006; Miller et al., 2013; Reebs, 2000,
2001). Juvenile shiners (average length approximately 5 cm)
were purchased from I. F. Anderson Farms (www.

andersonminnows.com) and housed in an environmentally
controlled laboratory for over 2 months before the start of
the experiment. The fish lived in 75-L tanks at a density of
approximately 150 fish per tank in dechlorinated, conditioned,
oxygenated, and continuously filtered and recycled fresh wa-
ter. Ambient temperature was maintained at 16 °C and the
photoperiod was 14∶10 light∶dark. The fish were fed three
times a day ad libitum with crushed flake food and experi-
ments were conducted 2 h after feeding. All experimental
procedures were approved by the Princeton University
Institutional Animal Care and Use Committee.

Experimental setup We used a six-arm radial maze with a
regular hexagonal central zone (see Fig. 1). The side length
of this hexagon was 23 cm; the dimensions of each arm were
42 × 20 × 20 cm (length × width × height). The walls were
made of 1.5-cm-thick white PVC boards. Note that other de-
signs are possible, with different dimensions and a different
number of arms that would depend on the research question.
The maze was placed inside a larger tank (2.1 × 1.2 m) par-
tially filled with water (10 cm deep) and weighted down with
bags of gravel attached outside the end of each arm. A 1-cm-
thick layer of gravel was deposited at the bottom of the maze.
When no trial was running, water in the tank was constantly
filtered by four aquarium pumps and filters. The pumps were
turned off during trials to prevent water movements from
influencing the behavior of the fish. Water temperature and
pH were adjusted before each trial to match those of the hous-
ing tanks. For this simple experiment, aimed at demonstrating
the usefulness of radial arm mazes for studying collective
behaviors, all the arms were kept open and empty at all times.

Trials were recorded using a Sony XDCAM EX HD cam-
era (image resolution: 1,920 × 1,080 pixels) whose field of
view covered the entirety of the maze. At the beginning of
each trial, the fish were placed inside an opaque, movable ring
in the central zone to prevent them from visually exploring the
maze before the start of a trial. They were left in the ring to
habituate for a period of 10 min. A trial started when the
opaque ring was slowly raised and removed from the tank
using a system of transparent fishing lines and pulleys.

First, we performed several 1-h-long trials using groups of
5, 10, and 20 fish, to compare our automated counting system
(see below) to human coders. Second, to validate the use of
our study parameters (i.e., majority determination and transi-
tions, indices of cohesion), nine trials were run for a duration
of 12 h each using groups of ten fish each (a tenth trial was
unusable due to a technical problem during video recording).
All trials were recorded at a frequency of one image per sec-
ond. Upon completion of a trial, the fish were returned to their
housing tanks.

Automated image processing For calculating majority transi-
tions and the cohesion index, Ic only requires knowing the
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number of individuals in each section of the maze. If the
number of observations required is small, this can be easily
done manually. However, if the number of observations is
large, considerable speed gains in data collection can be
achieved through automating the counting process. If the in-
dividuals are close enough in space between successive ob-
servations (typically if an animal cannot move more than half
its body length between two observations—Turchin, 1998), it
is possible to use one of the many multitracking programs
available on the market, such as CTRAX (Branson, Robie,
Bender, Perona, & Dickinson, 2009), idTracker (Pérez-
Escudero, Vicente-Page, Hinz, Arganda, & de Polavieja,
2014), or SwisTrack (Correll et al., 2006). However, this op-
tion is often limited to relatively short observation periods
(typically no longer than an hour) as the computing time in-
creases rapidly for the analysis of high frequency, high defi-
nition video recordings.

For the present study, we chose to rely instead on high
definition, low frequency recordings (one observation per sec-
ond) that allowed us to run observations over several hours
and that could be automatically processed in a matter of mi-
nutes. We developed a simple and robust computer vision
algorithm in order to estimate automatically the number of
individuals in each section of the radial maze (the central
region and each of the arms). This algorithmwas implemented
using Matlab R2015a and its associated Image Processing
Toolbox (Version 9.2). The code is available under the open-
source GNU General Public License v3.0 at the following
address: https://github.com/sjmgarnier/projectRadial. Below
are the different steps of the image processing algorithm that
result in the automated estimation of the number of
individuals in each section of the radial maze.

Software setup The user indicates the location of the
video file, as well as the total number of fish used during
the trial, the number of arms of the maze, and the desired
sampling rate if different from the video frame rate.
Maze detection The user indicates the location of the
four corners of each arm, starting from any arm (which
will be then labeled Arm 1) and moving clockwise from
there. The area between the arms will be automatically
labeled as the central (or starting) area.
Background imageA background image is generated by
averaging 100 images taken at regular intervals along the
video. In general, using a median image would have re-
sulted in a better approximation of the background image
than by averaging. However, it would have required a
considerably larger amount of memory, and it did not
prove necessary, at least in our setup.
Presence detection The background image is subtracted
from each image in the video. The local contrast of the
resulting difference image is then adjusted to balance the
low contrast parts of the original image (e.g., in shaded

areas where dark animals are less visible) with the high
contrast parts (e.g., in well-lit areas where dark animals
are more visible). This is done by multiplying the differ-
ence image by the inverse of the background image raised
to a user-determined power. Noise in the contrast-adjust-
ed, difference image is reduced using a three-pixel uni-
form disk filter. Finally, a user-determined threshold is
applied to the resulting image. Pixels whose values are
higher than the threshold are set to 1 (an animal is
present), the others are set to 0 (no animal).
Blob size and location Nonzero pixels are then grouped
into Bblobs,^ that is contiguous non-zero regions of the
image resulting from Step 4. The coordinates (x, y) of the
blobs in the maze are determined by their respective cen-
ters of mass (i.e., average coordinates of all pixels belong-
ing to a blob). To determine the likely number Bi of ani-
mals represented in each blob i, the number p of pixels
covered by a single fish is estimated as the total number
of nonzero pixels divided by the total number N of ani-
mals present in the radial maze (information provided by
the user at the beginning of the counting process). The
numberMi of animals in each blob i is computed as Ti—
the number of pixels in each blob divided by p—rounded
down to the closest integer. If∑Mi <N, the differencesDi

between each Ti and each Mi are computed and ordered
from highest to lowest. The numberMi corresponding to
the higher Di is then increased by one unit, and this pro-
cess repeats for all subsequent ordered Di values until
∑Mi =N.

Note that this algorithm (and the provided Matlab imple-
mentation) should work well with other maze sizes, numbers
of arms, and animal species, provided that (1) the entire maze
is visible in the video, and (2) the floor of the maze has a fairly
uniform coloring and contrasts well with the color of the
animals.

A blobwas determined to be in a particular zone (one of the
arms or the central zone) of the maze if its center of mass was
located within the polygon delimiting that zone, even if a blob
extended across the demarcation line between the central zone
and one of the arms (e.g., when a fish was transitioning from
one zone to the other). Finally, we simply considered that two
(or more) individuals belonged to the same group if they were
present in the same zone at a given time. Each group size was
therefore defined as the number of individuals in each partic-
ular zone of the maze.

Note that this method of determining group member-
ship and size is generally reliable, except when large
groups are transitioning between two zones in the maze,
in which case a group can potentially span several zones
simultaneously. However, such events are usually short-
lived and their unique signature can actually be used to
detect, automatically, when groups are moving between
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zones. Note as well that the error rate of the algorithm is
likely to increase if the individuals in the group have very
different sizes. If this is the case, we recommend using
more sophisticated computer vision algorithms (e.g.,
algorithms trained to detect particular shapes regardless
of their size; see, e.g., Qian, Cheng, & Chen, 2014;
Wang, Cheng, Qian, Liu, & Chen, 2016) or tagging the
animals with unique markers that can be detected individ-
ually (e.g., Delcourt, Ylieff, Bolliet, Poncin, & Bardonnet,
2011). For the purpose of this study—which is to demon-
strate how radial arm mazes can be used to study collec-
tive behavior and not demonstrating a new tracking meth-
od—we used fish of approximately the same size.

Validation of the automated counting systemTo evaluate the
precision of our automated counting algorithm, we selected
ten test images at random from each of the 18 videos of the
exploration experiments we performed (180 images in to-
tal). Approximately 15 human counters—since counts
were performed using an anonymous web application, it
was not possible to accurately track the identity of each
human counter—were asked to count the number of fish
in each zone of the radial arm maze. The human counters
were aware of the total number of fish in the maze in each
case (details of the instructions given to the human
counters can be found in Appx. S2). Images shown to the
human counters were selected pseudo-randomly from the
pool of 180 test images: Images that had been scored more
often by chance were subsequently less likely to be
displayed again, whereas images that had been scored less
often were more likely to be displayed again. Each human
counter performed different numbers of counts, and a giv-
en human counter may potentially have performed counts
for the same image several times, but without being in-
formed of this. All images were manually counted a min-
imum of eight times and a maximum of 20, with a median
count number of 13 (see Fig. S4). For each maze zone in
each image, we considered that human counters reached a
consensus if at least 75% of them agreed on the number of
fish present in that zone.

Data analysis

Statistics and graphs were performed in R (Version 3.3.3;
www.r-project.org). An accompanying R package
(projectRadial; https://github.com/sjmgarnier/projectRadial)
was developed to facilitate the calculation of Ic (see Appx.
S1 for details on the installation of the package and details
on the calculation process). This package depends on the par-
titions package (Version 1.9-18; Hankin, 2006, 2007). Flux
diagrams were realized in R using the qgraph package
(Version 1.4.2; Epskamp, Cramer, Waldorp, Schmittmann, &
Borsboom, 2012).

Results

Validation of the automated counting system

Figure 2a shows the proportions of times the human counters
reached a consensus for each zone, as well as for all the zones,
in a given image. Overall, a consensus was observed in more
than 95% of the cases. No significant difference was observed
between arms (χ² = 0.07, df = 5, p = .99), with a consensus in
97%–99% of cases. However, in the central zone human
counters were less likely to reach consensus (90%). This
was due to the organization of the maze: Human counters
were most likely to disagree with each other if one or more
fish were situated on the demarcation line between two zones.
Therefore, they were six times more likely to disagree on the
number of fish in the central zone, because it is directly con-
nected to six other zones (the six arms of the maze), whereas
each arm is connected to only one other zone (the central
zone). Overall, the human counters agreed on all zones at
the same time in 89% of the cases.

Fig. 2 (a) Proportions of times a 75% consensus was reached between
the human counters for each zone in the radial arm maze (first seven bars)
and for all the locations at once (final bar). (b) Proportions of times the
automated counting software was in agreement with the consensus counts
reached by human counters for each location in the radial arm maze (first
seven bars) and for all the locations at once (final bar). Broken lines
indicate the threshold value of .95
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Taking into account cases with full consensus only, Fig. 2b
shows a comparison of the performance of the automated
counting algorithm and the consensus counts obtained by hu-
man counters. The proportion of times that the computer counts
were in agreement with the consensus counts for each zone was
always above 95% for the maze arms. The agreement was
slightly less strong for the central zone (94.4%) for the reason
explained above. The proportion of times they agreed for all
zones at once was 89.4%.

Majority tracking and Ic

Figure 3 shows a typical example of a 12-h trial with a group of
ten fish. Periods of time inwhich amajority is achieved in one of
the zones are highlighted (using a different color for each arm).
The two zoomed-in time sequences detail the relationship be-
tween the size of the largest group (in an arm) and the periods
with or without a majority.

From this example (see also Fig. S5), it seems that majority
transitions are more frequent between adjacent arms. This is
clearly illustrated in the flow diagram in Fig. 4a, which shows
that first-order transitions are more likely to occur between ad-
jacent arms. Figure 4c shows the same information, normalized
to the position of the majority arm before the transition occurs.
Figure 4a confirms that the group majority explored all of the
available arms during the 12 h of the trial and that all possible
first- and second-order majority transitions were observed at
least once during that period. Figure 4c confirms that the more
frequent direct majority transitions are between an arm and one

of the two adjacent arms. Transitions between an arm and itself
are also frequent. Finally, Figs. 4b and 4d show that second-
order transitions are usually the consequence of two successive
first-order transitions toward the adjacent arms: The most fre-
quently observed transitions are either a direct return to the pre-
vious majority arm (M to L1/R1 to M) or transition to the next
arm in the same direction (M to L1 to L2 or M to R1 to R2).

Figure 5a shows Ic as a function of time in a typical trial with
a group of ten fish. Cohesion was low at the beginning of the
trial, when the fish had just been released from the central zone
and had started exploring the maze. It then increased during the
first hour and remained high for the rest of the trial, dropping
momentarily every time the group changed location in themaze.

Figure 5b shows the mean value of Ic, based on nine groups
of ten fish each, as a function of time. As is exemplified in Fig.
5a, mean Ic values are very low in the beginning of an experi-
ment and grow and stabilize after the first hour. Figure 5c shows
this progression during just the first hour of the experiment, with
a rapid increase in cohesion during the first 12 min (fish associ-
ating rapidly with one or two partners), followed by a slower
increase corresponding to the buildup of a majority.

Figure 6a shows that a group majority in one of the
arms is less likely to be reached during the first 30 min
of a trial, and when achieved, it changes arm more fre-
quently during the first hour than during the rest of the
trial. The number of majority transitions is also much
higher during the first hour (Fig. 6b). These observations
indicate that the first hour is a more unstable period, with
more exploration taking place in small groups. Group

Fig. 3 Complete trial example of majority transitions, with details of two
periods within the trial. The group size was ten fish, and the sequence
lasts 12 h. (a) Example of a sequence of 12 h, illustrating periods with and
without majorities. Each vertical colored bar shows a period during which
a majority were in a specific arm (n ≥ 6); the colors indicate which arm,

and the absence of color indicates a period without a majority in any arm.
(b) Details of two sequences of 2 h each (top, the first 2 h; bottom, Hours
8 to 10 of the experimental trial), with the relationship between the
maximal group size observed in the maze arms (the central zone is not
included) and periods with and without a majority
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cohesion is more stable during the rest of the 12-h period.
However, exploration does not stop, but is instead per-
formed as a cohesive group.

Discussion

Using radial arm mazes to study collective behavior

Radial arm mazes have been traditionally used for research on
individual cognition. In this article, we have proposed using
them to study social cognition and collective behaviors. We
illustrate our proposal with a proof-of-concept experiment
looking at the collective exploration behavior of fish shoals.
With the exception of Brown et al. (2009), who placed two rats

together in a radial maze, we do not know of any case in which
the radial arm maze paradigm was used to study collective be-
haviors, in particular for large groups.

The central principle of this paradigm is to allow tested
animals to sample multiple discrete options, with or without
replacement. After each visit to an arm of the maze (i.e., a
discrete choice), the animals are not disturbed by experi-
menters; they can return to the central zone and make a new
choice. Because the options are discrete, it is easy to catego-
rize and quantify the choices made by the animals.

All the traditional uses of the radial arm maze paradigm with
single animals can be applied to study animal groups (Table 1).
For instance, we can use this paradigm to test group preferences
and the ways that individual preferences may be modified in a
group context. These are likely to be different from the

Fig. 4 Upper panels: Examples of majority transition diagrams for a
group of ten fish during 12 h: (a) Majority transitions of the first order
(n = 186) and (b) majority transitions of the second order (n = 185).
Lower panels: Diagrams of majority transitions between relative arms
(relative to the current majority arm, M) for the same video sequence:

(c) Transitions of the first order (n = 186) and (d) transitions of the second
order without repetition (i.e., excluding leaving and returning to the same
arm during first-order transitions; n = 147). The thickness of the arrows is
proportional to the maximum observed value in each diagram
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preferences of isolated individuals, because group living is
known to modify individual patterns of exploration and exploi-
tation of the environment (Sumpter, 2010). In a group, an indi-
vidual may be able to react sooner or more strongly to subtle
differences in the environment, thanks to the many-eyes effect;
an individual might also bemore likely to find the best resources
(Berdahl et al., 2013). The radial arm maze paradigm is also
used to study how isolated individuals resolve conflicts between
bits of information they possess about the different parts of the
maze. This can be extended to study conflicts during collective
decision-making—when different group members possess dif-
ferent information, for example (Couzin et al., 2011; Miller
et al., 2013). Spatial exploratory behaviors, notably stereotypic
motion schemes (i.e., algorithmic behaviors), can also be studied
at the group level using this paradigm.

The radial arm maze can also be used to study questions that
are specific to group behaviors (Table 1). The discrete nature of
each animal’s choices in this setup makes it easy to assign each
animal to a specific group. This makes the radial arm maze
paradigm ideal for studying fission–fusion dynamics in animal

groups in the context of constrained physical environments, for
instance. It can also be used to study most typical social phe-
nomena, such as collective decision-making, sharing or trans-
mission of information, collaboration, competition, social status
establishment, and social learning. In addition, the contents of
each arm can be modified independently of the other arms,
making it possible to study the effects of environmental hetero-
geneities on the behavior of the group and of its members. Such
heterogeneities are known to have a major impact on animal
decision-making and to directly affect the dynamics of group
formation (Bode & Delcourt, 2013, Delcourt, Bode, & Denoël,
2016).

If the studied species is not highly gregarious and/or if the
number of arms (or zones) is large, it is possible that a majority
in any zone will be rarer. The quantification of majority states,
majority transitions, and cohesion indices are useful information
about the degree of gregariousness of the individuals, notably to
test how different factors (e.g., physiological states, ratio of bold
and shy individuals, species, or time of day) influence cohesion
in the maze. Moreover, such studies could be used to explore, in

Fig. 5 (a) Example of our cohesion index, Ic, as a function of time, in a
group of ten fish during a 12-h session. The orange dotted line is the
minimal value of Ic (= .39) at which a majority can be observed (corre-
sponding to a partition of 6/1/1/1/1), and the green dotted line is the
maximal value of Ic (= .51) at which no majority can be observed (a
partition of 5/5). Whenever the data are situated between these two
values, a transition of majority can be observed; each time the data fall

under the orange line, a transition of majority is being observed with
certainty. (b, c) Mean values of Ic as a function of time, based on nine
groups of ten fish each. (b) During the 12 h of the experiment, note the
lower values during the first hour. (c) Detail of the first hour of the
experiment; note the two different profiles in the increase in Ic, before
(very rapid increase) and after 12 min (moderate increase). The broken
vertical line indicates 12 min from the start of the session
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weakly cohesive or nonsocial species, whether each individual
moves completely independently of others, or tends to avoid
them. The distribution of individuals across different discrete
zones can be informative in this respect. Individuals tending to
avoid others will be more homogeneously spread than is pre-
dicted by chance. Individuals that are simply ignoring others in
their individual choices will be dispersed across different zones
following a probability distribution of combination laws (which
can be modified to take into account individual preferences, if
necessary). A social species will be significantly less dispersed

than predicted by combination laws. The comparison of these
predicted distributions to the observed distribution can be used
as a test to demonstrate the degree of social tendency in a
species.

The radial arm maze paradigm presents several other ad-
vantages for the study of collective behavior: (1) it is easy to
set up; (2) it can be applied to most social species, aquatic or
not; (3) guillotine doors can be placed at the entrance to each
arm to temporarily or permanently restrict the number of op-
tions (Miller et al., 2013); and (4) long periods of

Fig. 6 (a) Mean (± SE) percentages of time when a majority was
observed in any arm, binned into periods of 30 min for an entire 12-h

session, for nine groups of ten fish each. (b) Mean (± SE) frequencies of
majority transitions as a function of time

Table 1 Some applications of radial mazes to study group behaviors; testing a group also allows for the investigation of a series of new questions

Traditional applications, but now observed at the group level New applications

Exploratory behaviors
Algorithmic behaviors
Choice experiments
Discrimination of cues
Spatial learning

Fission–fusion processes
Self-organization processes
Interactions between the individual and group levels
Collective decision-making processes
Interactions between individual, and social information
Group memory phenomena
Social learning
Impacts of social status
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experimentation can be carried out without having to remove
individuals from the arena between choices, thereby minimiz-
ing manipulation-induced stress.

Limitations of the method

In a radial arm maze, two fish located in different zones are not
necessary completely disconnected from each other or unable to
interact. For example, a fish might be able to perceive by olfac-
tion that another individual was present in a particular arm re-
cently (Sorensen & Wisenden, 2014). Such detections, in addi-
tion to other cues (e.g., the presence of feces), can influence the
probability that an individual will stay or leave that arm. More
direct interactions are also possible. Fish can perceive conspe-
cifics by vision and by their lateral line (Partridge & Pitcher,
1980). Vision is most important for long-distance interaction,
for maintaining group cohesion by attraction (e.g., for joining
a group or avoiding being isolated from a group). The lateral line
is most important for repulsion in short-distance interaction, to
avoid collisions and to provide information about the speed and
direction of near neighbors (Partridge, 1982). In our experimen-
tal setup, a fish located in an arm can visually perceive a fish in
the opposite arm, but this is less likely for other arms, since the
walls of the maze will generally interfere. If the lateral line sense
is more adapted for short-distance perception (Mogdans &
Bleckmann, 2012; Yang et al., 2006), the perception of vibration
or infrasound produced by another individual might be transmit-
ted at some distance as an imprecise cue. Reflection by the walls
of themaze and the attenuation of this signal with the cube of the
distance (Partridge & Pitcher, 1980) make this mode of interac-
tion probably quite inefficient at larger distances. Nevertheless,
some of these sensorymodalities can be blocked by the structure
of the maze, and others not, offering an opportunity to explore
the respective role of different perceptual modalities in the indi-
vidual decision to join or leave a group or a zone. For example, it
is possible to construct a radial maze from transparent plastic, in
which case visual cues would not prevent detection of conspe-
cifics in adjacent arms, but mechanosensory cues would still be
blocked.

The design of a radial maze must take into account the
body size and number of individuals used. Trivially, it is im-
portant for fish to have sufficient space to make individual and
collective choices. We suggest that the experimental setup
must be at least large enough so that the entire group can
comfortably fit in one arm.

Measuring collective behavior in the radial arm maze

Measuring the collective dynamics of animal groups is made
simpler by the discretization of space offered by the radial arm
maze. As we demonstrated in our proof-of-concept experi-
ment, it is not necessary in this setup to extract each animal’s
trajectory (Delcourt, Denoël, Ylieff, & Poncin, 2013) or to

determine the identity of each individual (Pérez-Escudero
et al., 2014) in order to identify dynamic social processes at
the scale of the group. Instead, we resorted simply to counting
the number of individuals in each section of the maze, a pro-
cess that can easily be automated, as demonstrated by the
image-processing software provided with this article, which
we validated against human counters. Therefore, it is possible
with this paradigm to run and analyze very long experiments
(the experiments in our study lasted 12 h and were recorded at
one frame per second) without requiring exceptional comput-
ing resources. Obviously, not having access to individual
identities of each member of the group will limit this counting
method to answering questions about the collective dynamics
of the group. However, in cases in which individual identities
are necessary, more advanced tracking tools (e.g., Pérez-
Escudero et al., 2014) can be combined with the radial arm
maze setup to determine where each individual is exactly lo-
cated in the maze.

The counting data that we collected allowed us to determine
the distribution of group sizes as a function of time as well as the
presence of majority choices at any point during each experi-
ment. As is illustrated in Fig. 4, it is easy to analyze and visualize
the sequence of choices made by the group by calculating the
transition matrix and diagram for the group majority between
each of the maze’s arms. This is a convenient way to detect the
existence of algorithmic behaviors (stereotyped movement
patterns, generally dependent only on the immediately
previous choice; Hughes & Blight, 1999; Roitblat et al., 1982)
and to have a metric against which to compare the predictions of
models and computer simulations, for instance.

Group cohesion—one of the most important characteristics of
group behavior—is usually evaluated on the basis of the relative
locations of the group members (e.g., using nearest-neighbor
distance, the Clark–Evans index, dispersion indexes, the G func-
tion, or compactness; seeDelcourt&Poncin, 2012, for a review).
These metrics cannot be used easily in structured spaces, such as
the radial arm maze or many natural environments, where indi-
viduals can be close to each other but unable to interact directly
because of barriers between them. We proposed a new index to
measure group cohesion in a structured space. Denoted Ic, this
index quantifies the degree of cohesion, taking into account the
number of groups, their respective size, and their distribution in
the various zones of the space. Our cohesion index varies be-
tween 0 and 1 and is based on the number of individuals in each
zone only, without taking into account the relative positions of
the individuals. This parameter is also corrected so as to normal-
ize the effect of the total number of individuals and zones in the
space, and so could be used to compare the cohesion of groups of
different sizes in different spaces. We did not conduct experi-
ments here to study the impact of heterogeneity, and we cannot
know what effect its variation might have on behavior. We can
speculate that, in a heterogeneous environment, cohesion could
be affected in two opposite ways. In more heterogeneous
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environments, individuals may be more likely to lose sight of
conspecifics, which might increase group fission, so that Ic could
decrease. However, groups may choose to spend longer in zones
with more in them (such as plants that offer shelter, for instance),
which might also be reinforced by social facilitation. This would
serve to increase cohesion and Ic.

Conclusions

We have proposed a new standardized tool to investigate col-
lective exploration and decision-making that makes it possible
to study group cohesion (the degree of aggregation) and the
motion of the majority, two of the most important character-
istics in collective behavior. Because classical parameters ded-
icated to the measurement of the degree of cohesion are not
well-adapted to the radial maze, a new cohesion index was
developed that takes into account the number of groups and
their respective size. This cohesion index is normalized,
allowing for comparisons between groups of different sizes,
and allows for the comparison of cohesion between mazes
with different numbers of arms or zones. In a proof-of-
concept experiment with Golden shiners, we demonstrated
the potential of this new method (radial maze + animal group
+ counting system), without the need for tagging the fish,
tracking, or identifying individuals, but simply automatically
counting the number of individuals in each defined zone. The
performance of our counting system compares well to that of
human scorers. The possibility for animal groups to make a
large number of successive choices, each time via the central
part of the maze, makes possible long-duration experiments
without the intervention of the experimenter, eliminating a
significant source of stress that could affect the results. In
Appendix S1, we present tools to calculate partitions, combi-
nations of partitions, number of partitions, Dmin, and Ic.

Author note J.D. is a postdoctoral researcher at the Fonds de la
Recherche Scientifique (FRS)–FNRS (Belgium). This work was support-
ed by the FRS–FNRS under FRFC Grants 2.4617.08F, 2.4507.08.F, and
T.1064.14 (PDR FNRS project). I.D.C. acknowledges support from the
NSF (Grants PHY-0848755, IOS-1355061, and EAGER-IOS-1251585),
ONR (Grants N00014-09-1-1074, N00014-14-1-0635), ARO (Grants
W911NG-11-1-0385, W911NF-14-1-0431), and the Human Frontier
Science Program (RGP0065/2012). We thank Adrian de Froment for
useful discussions and for helping with part of the experiments. We also
thank Pascal Poncin and Jean-Louis Deneubourg for their support and
advice in the PDR FNRS Project. We thank C. Orban for her advice on
the writing.

References

Al-Imari, L., & Gerlai, R. (2008). Sight of conspecifics as reward in
associative learning in zebrafish (Danio rerio). Behavioural Brain
Research, 189, 216–219.

Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J., & Couzin, I. D.
(2013). Emergent sensing of complex environments by mobile an-
imal groups, Science, 339, 574–576.

Bode, N. W. F., & Delcourt, J. (2013). Individual-to-resource landscape
interaction strength can explain different collective feeding behav-
iours. PLoS ONE, 8, e75879. doi:https://doi.org/10.1371/journal.
pone.0075879

Branson, K., Robie, A. A., Bender, J., Perona, P., & Dickinson, M. H.
(2009). High-throughput ethomics in large groups of Drosophila.
Nature Methods, 6, 451– 457. doi:https://doi.org/10.1038/nmeth.
1328

Brown, M. F., & Giumetti, G. W. (2006). Spatial pattern learning in the
radial arm maze. Learning & Behavior, 34, 102–108.

Brown, M. F., Prince, T.-M. N., & Doyle, K. E. (2009). Social effects on
spatial choice in the radial arm maze. Learning & Behavior, 37,
269–280. doi:https://doi.org/10.3758/LB.37.3.269

Cole, M. R., & Chappell-Stephenson, R. (2003). Exploring the limits of
spatial memory in rats, using very large mazes. Learning &
Behavior, 31, 349–368.

Colwill, R. M., Raymond, M. P., Ferreira, L., & Escudero, H. (2005).
Visual discrimination learning in zebrafish (Danio rerio).
Behavioural Processes, 70, 19–31.

Correll, N., Sempo, G., Lopez deMeneses, Y., Halloy, J., Deneubourg J.-
L., & Martiloni, A. (2006, October). SwisTrack: A tracking tool for
multi-unit robotic and biological systems. Paper presented at the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Beijing, China.

Couzin, I. D., Ioannou, C. C., Demirel, G., Gross, T., Torney, C. J.,
Hartnett, A., ... Leonard, N. E. (2011). Uninformed individuals
promote democratic consensus in animal groups. Science, 334,
1578–1580.

Couzin, I. D., Krause, J., Franks N. R., & Levin, S. A. (2005). Effective
leadership and decision-making in animal groups on the move.
Nature, 433, 513–516.

Creson, T. K., Woodruff, M. L., Ferslew, K. E., Rasch, E. M., &Monaco,
P. J. (2003). Dose-response effects of chronic lithium regimens on
spatial memory in the black molly fish. Pharmacology,
Biochemistry, and Behavior, 75, 35–47.

Crusio, W. E., & Schwegler, H. (2005). Learning spatial orientation tasks
in the radial-maze and structural variation in the hippocampus in
inbred mice. Behavioral and Brain Functions, 1(3), 1–11. doi:
https://doi.org/10.1186/1744-9081-1-3

Delcourt, J., Bode, N. W. F., & Denoël, M. (2016). Collective vortex
behaviors: Diversity, proximate, and ultimate causes of circular an-
imal group movements. Quarterly Review of Biology, 91, 1–24.

Delcourt, J., Denoël, M., Ylieff, M., & Poncin, P. (2013). Video
multitracking of fish behaviour: A synthesis and future perspectives.
Fish and Fisheries, 14, 186–204.

Delcourt, J., & Poncin, P. (2012). Shoals and schools: back to the heuristic
definitions and quantitative references. Reviews in Fish Biology and
Fisheries, 22, 595–619.

Delcourt, J., Ylieff, M., Bolliet, V., Poncin, P., & Bardonnet, A. (2011).
Video tracking in the extreme: A new possibility for tracking noc-
turnal underwater transparent animals with fluorescent elastomer
tags. Behavior Research Methods, 43, 590–600.

Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D.,
& Borsboom, D. (2012). qgraph: Network visualizations of re-
lationships in psychometric data. Journal of Statistical Software,
48, 1–18.

Hankin, R. K. S. (2006). Additive integer partitions in R. Journal of
Statistical Software, 16, Code Snippet 1.

Hankin, R. K. S. (2007). Set partitions in R. Journal of Statistical
Software, 23, Code Snippet 2.

Hodges, H. (1996). Maze procedures: The radial-arm and water maze
compared. Cognitive Brain Research, 3, 167–181.

Behav Res

https://doi.org/10.1371/journal.pone.0075879
https://doi.org/10.1371/journal.pone.0075879
https://doi.org/10.1038/nmeth.1328
https://doi.org/10.1038/nmeth.1328
https://doi.org/10.3758/LB.37.3.269
https://doi.org/10.1186/1744-9081-1-3


Hughes, R. N., &Blight, C.M. (1999). Algorithmic behaviour and spatial
memory are used by two intertidal fish species to solve the radial
maze. Animal Behaviour, 58, 601–613.

Hughes, R. N., & Blight, C. M. (2000). Two intertidal fish species use
visual association learning to track the status of food patches in a
radial maze. Animal Behaviour, 59, 613–621.

Katz, Y., Ioannou, C. C., Tunstrøm, K., Huepe, C., & Couzin, I. D.
(2011). Inferring the structure and dynamics of interactions in
schooling fish. Proceedings of the National Academy of Sciences,
108, 18720–18725.

Leblond, C., & Reebs, S. G. (2006). Individual leadership and boldness in
shoals of golden shiners (Notemigonus crysoleucas). Behaviour,
143, 1263–1280.

Leonard, N. E., Shen, T., Nabet, B., Scardovi, L., Couzin, I. D., &
Levin SA. (2012). Decision versus compromise for animal
groups in motion. Proceedings of the National Academy of
Sciences, 109, 227–232.

Lipp, H. P., Pleskacheva,M. G., Gossweiler, H., Ricceri, L., Smirnova, A.
A., Garin, N. N., ... Dell’Omo G. (2001). A large outdoor radial
maze for comparative studies in birds and mammals. Neuroscience
& Biobehavioral Reviews, 25, 83–99.

Lopez, J. C., Bingman, V. P., Rodriguez, F., Gomez, Y., & Salas, C.
(2000). Dissociation of place and cue learning by telencephalic ab-
lation in the goldfish. Behavioral Neuroscience, 114, 687–699.

Lopez, U., Gautrais, J., Couzin, I. D., & Theraulaz, G. (2012). From
behavioral analyses to models of collective motion in fish schools.
Interface Focus, 2, 693–707.

Macpherson, K., & Roberts, W. A. (2010). Spatial memory in dogs
(Canis familiaris) on a radial maze. Journal of Comparative
Psychology, 124, 47–56.

Miller, N., Garnier, S., Hartnett, A. T., & Couzin, I. D. (2013). Both
information and social cohesion determine collective decisions in
animal groups. Proceedings of the National Academy of Sciences,
110, 5263–5268.

Miller, N., &Gerlai, R. (2011). Redefiningmembership in animal groups.
Behavior Research Methods, 43, 964–970. doi:https://doi.org/10.
3758/s13428-011-0090-z

Miller, N. Y., & Gerlai, R. (2008). Oscillations in shoal cohesion
in zebrafish (Danio rerio). Behavioural Brain Research, 193,
148–151.

Mogdans, J., & Bleckmann, H. (2012). Coping with flow: behavior,
neurophysiology and modeling of the fish lateral line system.
Biological Cybernetics, 106,627–642.

Mueller-Paul, J., Wilkinson, A., Hall, G., & Huber, L. (2012). Radial-
arm-maze behavior of the red-footed tortoise (Geochelone
carbonaria). Journal of Comparative Psychology, 126, 305–317.

Olton, D. S., Collison, C., & Werz, M. A. (1977). Spatial memory and
radial arm maze performance of rats. Learning and Motivation, 8,
289–314.

Olton, D. S., & Samuelson, R. J. (1976). Remembrance of places past:
Spatial memory in rats. Journal of Experimental Psychology:
Animal Behavior Processes, 2, 97–116.

Partridge, B. L. (1982). The Structure and Function of Fish Schools.
Scientific American, 246, 114–123.

Partridge, B. L., & Pitcher, T. J. (1980). The sensory basis of fish schools:
Relative roles of lateral line and vision. Journal of comparative
physiology, 135, 315–325. https://doi.org/10.1007/BF00657647

Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., & de
Polavieja, G. G. (2014). IdTracker: Tracking individuals in a group
by automatic identification of unmarked animals. Nature Methods
11, 743–748.

Pitcher, T. J. (1983). Heuristic definitions of fish shoaling behavior.
Animal Behaviour, 31, 611–613.

Pleskacheva, M. G. (2009). Behavior and spatial learning in radial mazes
in birds. Neuroscience and Behavioral Physiology, 39, 725–739.

Qian, Z.-M., Cheng, X. E., & Chen, Y. Q. (2014). Automatically detect
and track multiple fish swimming in shallow water with frequent
occlusion. PLoS ONE, 9, e106506. doi:https://doi.org/10.1371/
journal.pone.0106506

Quera, V., Beltran, F. S., & Dolado, R. (2011). Determining shoal mem-
bership: A comparison between momentary and trajectory-based
methods. Behavioural Brain Research, 225, 363–366.

Quera, V., Beltran, F. S., Givoni, I. E., & Dolado, R. (2013). Determining
shoal membership using affinity propagation. Behavioural Brain
Research, 241, 38–49.

Reebs, S. G. (2000). Can a minority of informed leaders determine
the foraging movements of a fish shoal? Animal Behaviour, 59,
403–409.

Reebs, S. G. (2001). Influence of body size on leadership in shoals
of golden shiners, Notemigonus crysoleucas. Behaviour, 138,
797–809.

Roitblat, H., Tham, W., & Golub, L. (1982). Performance of Betta
splendens in a radial arm maze. Animal Learning & Behavior, 10,
108–114.

Sison, M., & Gerlai, R. (2010). Associative learning in zebrafish (Danio
rerio) in the plus maze. Behavioural Brain Research, 207, 99–104.

Sorensen, P. W., & Wisenden, B. D. (2014). Fish Pheromones and
Related Cues. Wiley & Sons, Inc. 296 p. https://doi.org/10.1002/
9781118794739

Sumpter, D. J. T. (2010). Collective animal behavior. Princeton
University Press. 302 p. https://doi.org/10.1515/9781400837106

Tolman, E. C., Ritchie, B. F., & Kalish, D. (1946). Studies in spatial
learning: I. Orientation and the short-cut. Journal of Experimental
Psychology, 36, 13–24. doi:https://doi.org/10.1037/h0053944

Tunstrøm, K., Katz, Y., Ioannou, C. C., Huepe, C., Lutz, M. J., & Couzin,
I. D. (2013). Collective states, multistability and transitional behav-
ior in schooling fish. PLoS Computational Biology, 9, e1002915.
https://doi.org/10.1371/journal.pcbi.1002915

Turchin, P. (1998). Quantitative analysis of movement: Measuring and
modeling population redistribution of plants and animals.
Sunderland, MA: Sinauer Associates.

Vorhees, C. V., & Williams, M. T. (2014). Assessing spatial learning and
memory in rodents. Institute for Laboratory Animal Research
Journal, 55, 310–332.

Walsh, T. J., & Chrobak, J. J. (1987). The use of the radial arm maze in
neurotoxicology. Physiology and Behavior, 40, 799–803.

Wang, S. H., Cheng, X. E., Qian, Z.-M., Liu, Y., & Chen, Y. Q. (2016).
Automated planar tracking the waving bodies of multiple zebrafish
swimming in shallow water. PLoS ONE, 11, e0154714. https://doi.
org/10.1371/journal.pone.0154714

Ward, A. J., Sumpter, D. J. T., Couzin, I. D., Hart, P. J. B., & Krause, J.
(2008). Quorum decision-making facilitates information transfer in
fish shoals. Proceedings of the National Academy of Sciences, 105,
6948–6953.

Washizuka, K., & Taniuchi, T. (2006). Acquisition of a radial maze task
by goldfish. Japanese Journal of Animal Psychology, 56, 27–33.

Washizuka, K., & Taniuchi, T. (2007). Proactive interference on the radial
arm maze performance of zebrafish. Japanese Journal of Animal
Psychology, 57, 73–79.

Wilkie, D. M., & Slobin, P. (1983). Gerbils in space: Performance on the
17-arm radial maze. Journal of the Experimental Analysis of
Behavior, 40, 301–312.

Wilkinson, A., Coward, S., & Hall, G. (2009). Visual and response-based
navigation in the tortoise (Geochelone carbonaria). Animal
Cognition, 12, 779–787.

Yang, Y., Chen, J., Engel, J., Pandya, S., Chen, N., Tucker, C., Coombs,
S., Jones, D. L., & Liu, C. (2006). Distant touch hydrodynamic
imaging with an artificial lateral line. Proceedings of the National
Academy of Sciences, 103,18891–18895.

Behav Res

https://doi.org/10.3758/s13428-011-0090-z
https://doi.org/10.3758/s13428-011-0090-z
https://doi.org/10.1007/BF00657647
https://doi.org/10.1371/journal.pone.0106506
https://doi.org/10.1371/journal.pone.0106506
https://doi.org/10.1002/9781118794739
https://doi.org/10.1002/9781118794739
https://doi.org/10.1515/9781400837106
https://doi.org/10.1037/h0053944
https://doi.org/10.1371/journal.pcbi.1002915
https://doi.org/10.1371/journal.pone.0154714
https://doi.org/10.1371/journal.pone.0154714

	Methods for the effective study of collective behavior in a radial arm maze
	Abstract
	Methodology
	Radial arm maze
	Tracking group dynamics
	Case study
	Data analysis

	Results
	Validation of the automated counting system
	Majority tracking and Ic

	Discussion
	Using radial arm mazes to study collective behavior
	Limitations of the method
	Measuring collective behavior in the radial arm maze
	Conclusions

	References


