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Animal groups often make decisions sequentially, from the front to the back
of the group. In such cases, individuals can use the choices made by earlier
ranks, a form of social information, to inform their own choice. The optimal
strategy for such decisions has been explored in models which differ on, for
example, whether or not agents take into account the sequence of observed
choices. The models demonstrate that choices made later in a sequence are
more informative, but it is not clear if animals use this information or rely
instead on simpler heuristics, such as quorum rules. We show that a
simple rule ‘copy the last observed choice’, gives similar predictions to
those of optimal models for most likely sequences. We trained groups of
zebrafish to choose one arm of a Y-maze and used them to demonstrate
various sequences to naive fish. We show that the naive fish appear to use
a simple rule, most often copying the choice of the last demonstrator,
which results in near-optimal choices at a fraction of the computational cost.
1. Background
Members of species that live in groups must often make collective decisions that
may pit personal preferences against the need to maintain group cohesion.
In some cases, individuals may have personal information—based on their
own past experiences of the environment—that conflicts with their social infor-
mation—the choices they observe other members of their group making. How
best to balance these sources of information to arrive at a decision has been the
subject of much theoretical research [1,2]. There has also been increasing interest
in how animals actually combine or decide between information from these two
sources [3–5].

In some species, groups are often spread out along the direction in which the
group is travelling [6]. When this occurs, decisions on which direction to move in
may be made more-or-less sequentially, from the front to the back of the group
[7,8]. Such cases have been extensively examined in the laboratory, often using
groups of fish swimming in Y-mazes, as they afford an opportunity to accurately
define what the social information available to each individual consists of: the
choices made by the members of the group that are ahead of it and who therefore
choose an arm of the maze before it does [8–10]. It is, in addition, possible that
most decisions made within the context of a group are sequential to some
degree. For example, individuals may sometimes delay making a decision in
ambiguous cases to allow more social information to accumulate (e.g. [11]), or
individuals may weight social information in relation to how recent it is, thus
effectively sequentializing it [12]. In this case, even choices made by freely
moving groups may depend on the use of sequential social information.

In addition to empirical studies, there have been several attempts to model
the decision-making process in sequential-choice paradigms [8,11–15]. Most of
these models focus on the optimal choice that agents can make, given the social
and personal information at their disposal (e.g. [14,15]). These models fit exper-
imental data well in most cases, but their specific predictions have rarely been
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tested. Here, we empirically test a key distinction between
two classes of widely cited models of optimal choice:
models that take choice sequence into account, and those
that do not.

Pérez-Escudero & de Polavieja [13] proposed a model of
optimal sequential choice based on a Bayesianmethod for com-
bining personal and social information (see also [16]). This
model has been tested empirically and provides a good fit for
collective decision-making data from a wide range of species
[8,16–20]. However, the original model exists in two forms
that differ in their assumptions about how agents encode
social information. In the basic form of the model, agents’
choices are based on the relative numbers of group members
that they observe having made each possible choice before
making their own choice. Assume, for example, an agent that
observes four conspecifics choose between two options,
A and B, before it makes its own choice. If an agent in this situ-
ation observes that three conspecifics chose option A and only
one chose option B, the agent—in the absence of any personal
information that differentiates the two options—should be
biased towards choosing option A. We call this version of the
model ‘sequence-unaware’ (SU). This version of the model is
the one most often cited and used to fit experimental data.

In a more complex version of the model, which we call
the ‘sequence-aware’ (SA) model, agents also take into account
the order in which previous choices occurred. Assume the
same situation and distribution of choices as above: three to
A, one to B. One possible sequence of choices that could
generate this outcome is for the first conspecific to choose
option A, followed by one that chooses option B, and then
two in a row choosing option A, a sequence we denote
{ABAA}. Alternatively, an agent could observe the sequence
{AAAB}, in which the final conspecific contradicts the choices
of the earlier three. According to the SA model, agents in
these two situations will have different choice biases because,
in addition to considering the number of individuals at each
option (which is identical in both cases), they also consider
the information each conspecific is likely to have had at the
time of making their choice. This information is used to esti-
mate the confidence of each conspecific in their choice, a
proxy for the strength of their own bias (see [13] for details).
For example, in the first sequence, {ABAA}, the lone dissenting
individual (the second one to choose) has little social infor-
mation at the time it chooses, based on the choice of only one
previous individual. Its choice, therefore, suggests that it has
personal information that biases it in favour of option B,
strongly enough to overcome one conspecific-worth of conflict-
ing social information. In the second sequence, {AAAB}, the
dissenting conspecific is assumed to have observed all
three individuals ahead of it choose optionA. This individual’s
decision to nonetheless choose option B, contradicting all
that social information, suggests it has a very strong bias in
favour of option B. Assuming that conspecifics’ choices are
honest signals, this implies that the dissenting individual in
the second sequence may have more (or better) personal infor-
mation than the dissenting individual in the first sequence.
The focal agent should therefore weight the information it
gleans from the dissenter more heavily in the second sequence
and thus be less biased towards option A in the second case.
Note that the simpler SU model makes no distinction between
the two sequences {ABAA} and {AAAB} because the overall
number of choices to each option is the same in both cases.
We note that this SA model assumes that agents observe the
choices made by those ahead of them in the group, and that
each of those choices is made independently (see [13]). The
model is thus only relevant for predicting choices based on
sequential observations.

Mann [14] has presented an alternative model of collective
choice that also considers the sequence of choices a focal agent
observes. This model, which we term the rational agent (RA)
model, assumes that agents make rational choices, i.e. those
most likely to lead to the best outcomes given the personal
and (possibly sequential) social information at their disposal.
In this model, as in the SA model, the sequence of previous
choices that an agent observes has a large effect on its likeli-
hood of choosing each possible option. Mann [21] recently
extended this model to show that changes in environmental
conditions, such as (perceptual) noise levels, can affect the
types of rules that agents use. For example, agents habituated
to noisy environments, where perceptual information may be
unreliable, should follow rules that more strongly favour the
most recent decisions they observed. We note that all the fish
in our experiments had spent several months in the laboratory;
we speculate on the possible consequences of this for their
collective decision-making, in line with the predictions of the
RA model [14,21], in the discussion.

Keeping track of a sequence of choices made by others
may be cognitively demanding, especially as the sequence
increases in length. In many cases where there is an optimal
solution to a problem which is computationally difficult, ani-
mals (including humans) resort to simpler heuristics that will,
under most circumstances, give a similar or identical answer
to the full rule [22,23]. Such ‘rules of thumb’ also occur in
social situations [24]. One such simple rule is a quorum rule,
by which individuals will follow any subgroup that exceeds
in number some threshold. Quorum-like decision-making
rules have frequently been detected in the collective behaviours
of animal groups (e.g. [25]), including fishes [9,10,26,27], and
have previously been used to model data from sequential-
choice Y-maze experiments [25]. We, therefore, also compared
a quorum-based (QU) model to our data.

An equally simple alternative to quorum rules is to select
a single individual to copy. In a sequence of choices, the
final choice—the one made by the conspecific immediately
in front of the focal individual—is the most informative
because, as noted above, that individual itself had access to
the most social information. Animals could, therefore, use
the following simple rule in complex sequential-choice situ-
ations: copy, with some fidelity, the choice made by the
most recent conspecific. We call this the last-choice (LC)
model. There is some experimental evidence that fish choos-
ing when to move between two shelters follow this sort of
heuristic [12]. More complex versions of this type of rule,
such as making a choice based on the last n conspecifics
observed, have also been suggested [12].

Most other agent-based models of collective movement
define a set of rules followed by all agents, often synchro-
nously (i.e. all agents decide which direction to move in at
the same moment, then all locations are updated at once;
[28]; but see [29]). These rules are often ‘zonal’, meaning
that agents’ responses to conspecifics depend on their relative
distances from each other. Some zonal models have been
modified to include agents moving towards (or away from)
an external target [30,31]. Zonal models are explicitly non-
sequential but, as noted above, it is nonetheless possible
that in many cases animals in freely interacting groups
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sequentialize their movement decisions [12,32], potentially
using one or another of the rules discussed above.

In their presentation of the SU and SA models, Pérez-
Escudero & de Polavieja [13] noted that in most cases the SA
model makes very similar predictions to the simpler SU model,
and that both fit the data they compared them to equally well.
This lack of difference occurs because sequences like {AAAB}
seldom occur in empirical data from freely moving groups,
because individuals rarely contradict each other’s choices to
such a degree. Miller et al. [8] suggested that this is at least
partly because individuals prefer to remain in a cohesive
group, for reasons independent of the informational value of
those choices about the environment (see also [5,20]). This is
yet another reasonwhyresearchershavemostly reliedon simpler
models that ignore choice sequences, such as the SU model or
quorum-based rules. To the best of our knowledge, the distinc-
tion between the two classes of model has not previously been
empirically tested. Here, we test these model using zebrafish
(Danio rerio), a highly social species that is commonly used in
experiments on social decision-making and collective choice
[5,16,33].We compared the choice behaviours of groups of zebra-
fish to four leading models of collective choice described above:
the SA and SU models [13], the RA model [14] and a quorum
model (e.g. [27]), as well as the simple heuristic LC model.

We trained two separate groups of zebrafish to consistently
choose either the left or right arm of a Y-maze (electronic
supplementary material, figure S1). We call these fish ‘demon-
strators’. We then selected four demonstrators from the two
groups and released them into the maze in a predetermined
order, approximately 1 s apart, allowing us to construct any
desired sequence of social information. When all four demon-
strators had chosen one of the maze arms, we released into
the maze a naive fish, which we call the ‘observer’, that had
no previous experience of either the maze or the demonstrator
fish, and recorded its choice of arm. By using trained demon-
strators, we were able to expose observer fish to sequences
that are unlikely to occur under natural conditions and
measure patterns of observed choice for each sequence.
2. Methods
(a) Subjects and housing
Eightyadultwild-type zebrafish, obtained froma local pet store (Big
Al’s, Kitchener, Ontario, Canada), served as observers (test subjects)
in the experiment. A further 92 zebrafish served as demonstrators,
half trained to choose the left arm of the maze and half the right.
Finally, a further 20 fish were used as a social reward in training
the demonstrators (see below). All the fish were housed in a high-
density rack (Pentair Aquatic Habitats), in 10 l tanks, in groups
of no more than 10. Observers and demonstrators were never
housed in the same tank. The water in the rack was maintained at
25 ± 2°C, the salinity between 600 and 1100 ppm. The housing
room was on a 12 : 12 h light cycle with lights on at 7.00 each day.
All testing was done between 10.00 and 15.00. Fish were fed ad libi-
tum. each day following the completion of trials, on defrosted brine
shrimp or flake food.All procedures compliedwithCanadaCouncil
on Animal Care guidelines and were approved by the Wilfrid
Laurier University Animal Care Committee.

(b) Apparatus
Fish were tested in a Y-maze constructed of PVC boards. The
maze was placed inside a 1.83 × 1.83m tank that was filled
with water matching the characteristics of the housing tanks, to
a depth of 10 cm. In the tank, outside the maze, were heaters, fil-
ters and bubblers that maintained the water quality. The filters
and bubblers were turned off during trials. The walls of the
maze were 22 cm high; other dimensions of the maze are given
in the electronic supplementary material, figure S1. At the end
of each arm of the maze, there was a wider area, blocked off
with a transparent plastic barrier, to contain the reward fish
(see below). Along the stem of the Y-maze, where fish began
each trial, we attached a series of four remotely controlled trans-
parent doors, creating four separate start chambers along the
base of the maze (electronic supplementary material, figure S1).
Doors were made of transparent acrylic sheets that spanned
the width of the maze. Each door was glued to the tray of a
hacked CD-ROM drive that was mounted above the maze,
such that closing the CD-ROM drive retracted (opened) the
door. Drives were controlled from a set of switches placed out-
side the apparatus. A pair of fluorescent lights were mounted
along the sides of the stem of the maze to increase visibility
and make the stem brighter than the ends of the arms, which
we expected would increase a fish’s motivation to move down
the maze. For training trials, a blue plastic floating feeding ring
was affixed to the end of each arm of the maze.

Above the maze, we mounted a video camera (Sony HDR-
CX900) such that the entire maze was visible. A second camera
(Logitech C920 Webcam) was mounted above the far end of
the maze so that we could see into the start chambers. Videos
from both cameras were recorded for all test trials. The tank
that the maze was in was isolated from the rest of the room by
a white shower curtain hanging from the ceiling.

(c) Procedure
(i) Tagging
To identify the fish, all demonstrators and observers were tagged
with fluorescent visible implant elastomer (VIE; Northwest
Marine Technology) injected under their skin at least one week
before the start of the experiment. Demonstrators trained to go
to opposite arms were tagged in different colours. Observers
were given unique tag combinations for their tank, so they
could be individually identified. Reward fish were not tagged.

(ii) Training trials
In the first phase of the experiment, demonstrators were trained to
choose one arm of the maze. Groups of 6–10 demonstrators at a
time were placed in the stem of the maze. Only the front door,
closest to the choice arms, was closed. Six floating food pellets
(Hikari beta-bio gold) were placed into the feeding ring at the
arm designated as correct for this group. At the end of that arm,
behind the transparent barrier, six reward fish were placed, to
serve as an additional social reward. Demonstrators were left in
the start box for 1 min and then released into the maze. Once all
the fish had chosen an arm, they were gently removed from the
maze and returned to their home tanks. Demonstrator fish
received three training trials per day for 12 days before the start
of testing.

(iii) Testing trials
For testing trials, no reward fishwere present and the feeding rings
and food were removed. All four doors in the stem of the maze
were closed. We placed demonstrators in the front three compart-
ments, chosen to create the desired sequence for each test. For
example, to obtain the sequence {AABA}, we placed two fish
trained to choose arm A in the first compartment, one trained to
choose arm B in the second and one trained to choose arm A in
the third. In all trials, a single observer fish was placed in the
back compartment, alone. Fish were left in the start compartments
for 1 min, after which the first doorwas opened.As soon as the fish



Table 1. Model fits. (The table shows the best-fit parameter value (value),
log-likelihood and Akaike information criterion (AIC) score for each model’s
fit to the experimental data.)

model value log-likelihood AIC

rational-agent (RA) η/ν = 1.23 −122.65 247.29

sequence-unaware (SU) s = 1.46 −160.03 322.06

sequence-aware (SA) a0 = 4.64 −127.80 257.60

quorum (QU) k = 0.81 −204.81 411.62

last-choice (LC) a = 1.60 −116.06 234.12
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in that compartment hadmoved towards the choice arms, the next
door was opened and so on. Door openings were separated by
about a second, as all the fish moved quickly down the maze.
Trials did not conclude until the observer fish entered an arm of
the maze. At the end of the trial, all the fish were gently removed
from the maze and returned to their respective home tanks.

Each observer was tested a maximum of four times (eight fish
only completed one trial, eight only completed two trials, 24 only
completed three trials), with at least one week between trials.
Each demonstrator was only used for one test trial per day.
Demonstrators received additional rewarded training trials
interspersed with the test trials, to maintain their preferences.
We completed a total of 257 test trials. The raw choice data are
available on the Open Science Framework repository: https://
osf.io/59sd2/.

In many cases, despite extensive training, demonstrators did
not choose the arm they were trained to go to. We coded each
trial by the sequence of choices that was actually observed. In
some cases, if a demonstrator chose an arm and then left it (and
sometimes chose a different arm) before the observer chose any
arm, we considered only each demonstrator’s last choice as part
of the sequence. Any further movement between the arms that
occurred after the observer made its first arm choice was ignored.
2690
(d) Analysis
Videosweremanually coded byone of the authors (K.K.). For each
video, we coded the sequence of choices made by the demonstra-
tors, followed by the choice made by the observer. Data were
entered intoMicrosoft EXCEL andwere analysedusingMATHEMATICA

(WolframResearch, v. 10.0) andR [34]. For each possible sequence,
we coded the proportion of trials on which the observer chose the
majority arm, defined as the arm chosen by the majority of
the demonstrators. In sequences without a defined majority
(e.g. {AABB}), we designated the first choice as the majority arm.

We fitted five models to our choice data. The SU and SA
models were implemented in MATHEMATICA, using equations and
code given in [13]. We note that, in our experiments, observer
fish have no differential personal information about the arms
of the maze (i.e. no reason based on past personal experience
of the maze to prefer one arm over the other), and are never
rewarded in the maze, which considerably simplifies the
models. The SU model, when there is no differential personal
information (and assuming that the arms of the maze are inher-
ently identical), has one free parameter, denoted s in [13]. The SA
model, under the same conditions, also has one parameter,
denoted a’ in [13].

The RA model was implemented in R, using code provided
by Richard Mann (2020, personal communication). This model,
when there is no differential personal information, depends
only on the ratio of the noisiness of environmental information
under the experimental conditions, denoted η in [14], and the
equivalent noisiness under natural conditions, denoted ν. For
this model, we therefore fit the ratio η/ν to our data.

The QU model was implemented in MATHEMATICA as a simple
rule in the form of a Hill equation: P(x) ¼ Nk

x=(N
k
x þNk

y), where
Nx and Ny represent the number of individuals already at each
of the arms x and y, and k is a free parameter that we fit to our
data, representing the steepness of the function.

Finally, in the LC model, an agent’s probability of selecting
the arm chosen by the last demonstrator is given by:
P(L) ¼ 1=(1þ e�a), where a is a parameter that determines how
reliably agents copy choices. Note that this model—like the
other models we considered—is probabilistic: fish do not
always copy the choice of the last demonstrator.

We fitted the single free parameter of each model to our exper-
imental data and calculated theAkaike information criterion (AIC)
for each model (table 1).
We next compared the predictions of the different models for
all possible sequences of choices up to a length of eight, indepen-
dently of our data (in which we had four demonstrators on all
trials). To derive the probability of a particular sequence of
social information occurring, we iterated the models over each
possible sequence. Because our observer fish have no differential
personal information about the maze, we assume that the likeli-
hood of the single-choice sequence {A} is 0.5. We can then derive
the likelihood of the sequence {AB} by using each model’s
equation for the probability of choosing B given the sequence
{A}, and so on for sequences of any length. We compared predic-
tions of all possible sequences of lengths up to eight. For each
sequence, we derived the probability that it would occur, by
each of the four comparison models (SA, SU, RA and QU), and
the choice probability of the agent observing that sequence
by both the comparison and LC models. The parameters used
for the models were those that best fitted our data (table 1).
We then summed the likelihoods of all sequences in which the
LC and comparison models gave opposing predictions (one >
0.5 and one < 0.5).
3. Results
We first examined the choices of our observer fish for side
bias. The proportion of each subject’s choices to the left arm
of the maze was calculated (subjects that only completed a
single trial were removed from this analysis). A one-sample
Wilcoxon signed-ranks test found no evidence of side bias
in our fish (W = 1175.5, p = 0.052), so we combined sequences
across the two sides of the maze. For example, we considered
the sequence ‘right, left, left, left’ to be the same as ‘left, right,
right, right’, and denote both {BAAA}.

Despite their training, demonstrators did not always choose
the arm they were trained to. As a result, observers were
exposed to some sequences more often than others (figure 1,
green numbers below the x-axis). We calculated the proportion
of trials of each sequence onwhich observers chose themajority
arm. For sequences where there was no majority, such as
{AABB}, we designated the first demonstrator’s choice the
majority arm. We then regressed several models of sequential
choice against our data. We chose five models: the original
SU and SA models [13]; a recent model of social decision-
making by fully rational agents [14], which we label RA; a
QUmodel; and our heuristic LCmodel, which states that obser-
vers simply match the choice of the last demonstrator in the
sequence (see Methods for details). All models were fitted
to the raw choice data, weighted by the frequency with
which each sequence occurred. Table 1 shows the best-fit par-
ameters, model likelihoods and AIC scores for each model.
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Figure 1. Experimental results and model fits. Black dots indicate the pro-
portion of choices made by the observers to the majority arm for each
demonstrated sequence. Lines show model fits for the rational-agent (RA;
solid purple line), sequence-aware (SA; dotted red line), sequence-unaware
(SU; dash-dotted green line), quorum (QU; dashed blue line) and last
choice (LC; long-dashed yellow line) models. Error bars show Wilson score
intervals (binomial confidence intervals) on the empirical data. The thin hori-
zontal grey line indicates chance levels. Green numbers below the x-axis show
the number of times each sequence occurred in the data. (Online version in
colour.)

comparison model P (choose A)

RA model

SA model

SU model

QU model

0.2 0.4 0.6 0.8 1.0

Figure 2. Comparing heuristic predictions. Comparison of the predictions of
the LC model and those of the other four models for all possible sequences of
length up to eight that end in choice A (i.e. for which the LC model predicts
choosing A; 255 sequences). RA model: purple triangles; SA model: red cir-
cles; SU model: green squares; QU model, blue diamonds. Positions along the
y-axis are random, for ease of viewing. The position of each point along the
x-axis represents the prediction of the corresponding comparison model.
Symbol sizes reflect the likelihood of each sequence (the smallest symbols
have been enlarged so that they are visible). (Online version in colour.)
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Figure 1 shows the data (black dots) and best-fit version of
each model (lines).

We found that models which depend on choice sequences
(SA, RA and LC) fit our data much better than the models that
ignored sequences (SU and QU; AIC scores are given in
table 1). In particular, the SU and QU models failed to accu-
rately predict choices on trials where there was no majority
({ABBA}, {ABAB} and {AABB}; rightmost three points in
figure 1). In such cases, these models predict that the naive
observer fish should be equally likely to choose either arm.
However, as the data show (black dots in figure 1), fish in
these situations displayed strong biases for one option or the
other. Additionally, these models failed to predict the behav-
iour of fish in the most extreme sequence, {AAAB}, where a
single dissenting fish contradicts all previous choices. The
simple models, in this case, predict a relatively strong prefer-
ence for arm A, because there are three demonstrators there
compared to only one in arm B. However, observers rarely
chose arm A under these conditions (5 out of 28 trials).

In all four of the sequences where the SU and QU models
fail, the models that do account for sequence (SA, RA and
LC) predict the direction of the results correctly. All three
models, for example, correctly predict that fish which observe
the sequence {AAAB} are more likely than not to choose
option B, because the dissenting demonstrator is signalling
that it has a very strong bias in favour of B, and the models
therefore weight that demonstrator’s information more
heavily. Similarly, the final demonstrator—who confirms or
contradicts the most social information—has an outsized
effect on the observer’s responses in the three sequences
that lack a majority choice in these models. We found that
the LC model fit the data best of all five models that we
tested (table 1). This suggests that fish in our experiment
might use a simple heuristic to decide which demonstrators
to follow: copy the choice of the last demonstrator.

The parameter values that we found best fitted the models
to our data were generally similar to those previously
reported for groups of fish. Miller et al. [8], using the SU
model, found a value of s = 1.5 best fit their data on golden
shiners (Notemigonus crysoleucas), close to the value we
find for our data (s = 1.46). However, Pérez-Escudero &
de Polavieja [13] found a slightly higher average value of s =
2.5 fit three datasets on three-spined sticklebacks (Gasterosteus
aculeatus). Similarly, Pérez-Escudero & de Polavieja [13],
using the SA model, reported a value of a0 = 5 for the same
datasets, close to our value (a0 = 4.64).

To further explore the use of the LC model, we compared
the predictions of the model to those of the other four
models. In other words, we asked: how often does following
the final demonstrator lead to making the same choice as
would be predicted by the other models? Figure 2 shows
the predicted probability of choosing A by the SA (red cir-
cles), SU (green squares), RA (purple triangles) and QU
(blue diamonds) models for all possible sequences of lengths
up to eight that end in a choice of option A. We weighted
each sequence tested by its likelihood of occurring under
that model (see Methods for details; probability is indicated
by size of symbol in figure 2). The LC model returns a high
chance of choosing option A for these sequences (about
80%, when fitted to our data) and, as figure 2 shows, the
other models concur for the most common sequences
(larger symbols). We counted the number of sequences in
which each comparison model predicted a probability less
than 0.5, i.e. in which it contradicted the prediction of the
LC model. We then weighted this number by the probability
that each sequence would occur (see Methods). The RA
model always gave the same response as the LC model (i.e.
the predictions made by the two models for any sequence
were always either both greater than 0.5 or both less than
0.5). In other words, at least for sequences of up to eight indi-
viduals, following the last individual gives the same general
answer (the choice bias is in the same direction) as computing
the result of the RA optimal choice model. The SA and LC
models gave conflicting predictions for eight (of 255)
sequences, representing 1.48% of likely events. The SU and
QU models diverged from the LC model on 64 sequences,
representing 11.25% and 0.005% of likely events, respectively
(‘unusual’ sequences, which tend to be where the two models
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give divergent predictions, are far less likely to occur under
the QU model). So, the LC model serves as a good heuristic
for both sequence-aware models, but less so for the models
that ignore sequence.
ietypublishing.org/journal/rspb
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4. Discussion
By training zebrafish to choose one armof a Y-maze and releas-
ing them into the maze in a specific order, we were able to
present naive fish with controlled sequences of social infor-
mation. We then fitted five models to these data. We show,
first, that sequence-aware models (SA, RA and LC) fit our
data much better than the simpler models (SU and QU). In
other words, zebrafish, when making a choice between two
options about which they possess no differential personal
information, consider not only the number of individuals
that have previously chosen each option but also incorporate
information about the sequence in which those choices were
made. Their choices are affected by the information that each
earlier-choosing conspecific, ‘demonstrator’ in our experiment,
was likely to have had. Demonstrators who contradict a larger
amount of social information are assumed to have a stronger
personal bias in favour of the option they selected, and their
choice is therefore weighted more heavily in the observer’s
own decision-making process.

The model that best fitted our data was one according to
which observer fish simply copied the choice of the last
demonstrator they watched before making their own choice,
a simple heuristic. Because the last demonstrator in any
group has the most social information, its choice is the most
informative according to all the sequence-based models.
Thus, copying this choice—as our fish appeared to do—may
be a computationally cheap way of achieving results similar
to those given by sequence-dependent optimal choice
models, such as the SA and RA models (as also suggested
by [12]). Comparing the models to each other, we found
that, at least for sequences of length up to eight individuals,
this simple heuristic suggested the same choice as the more
complex models in almost every instance (always for the RA
model, and 98.5% of the time for the SA model).

Mann [14,21] noted that environmental information in the
laboratory will tend to be less noisy (more reliable) than out-
side the laboratory, and we believe our laboratory to be no
exception to this rule (e.g. housing tanks and the maze were
bare of any plants or rocks; maze walls were uniformly
white). Mann further suggested that in situations where
there is less environmental noise (η) than in the ‘habitual’
environment (ν), social effects increase, including a preference
for the most recent demonstrated choices, which is in keeping
with our findings. We note that we found the best fit of the RA
model to our data at a value of η/ν = 1.23, suggesting that the
noise in the maze was slightly higher than subjects’ habitual
environment. It is possible that this is because of our fish
having lived for a long time in the laboratory before testing,
or reflects a generalized increased sociability in response to
novelty (the maze; e.g. [8]). Alternatively, if our fish are
using a heuristic similar to the LC model, copying the last
demonstrator they observe, this would also lead to a higher
η/ν value fitting the data best.

Our heuristic model only ever returns one of two probabil-
ities, depending on the final choice the choosing agent observes,
whereas the computationally sophisticated models return a
range of probabilities. This suggests that using the LC or a simi-
lar heuristic entails a loss of flexibility in decision-making.
For example, in most cases fish might possess some personal
information about the choices before them based on past
experience. Combining this personal information with social
information—a process that all three computational models
(SU, SA and RA) address—may be more difficult when using
a heuristic model, and might result in different choices.
For example, upon observing the sequence {AAAB}, the SA
model (using the best-fit parameter value for our data) predicts
a 55% chance that the next individual will choose option B (this
number is 68% for the RA model). These values are close
enough to 50% that a small amount of personal information
which favoured choosing option A might be sufficient to alter
the choice made by an agent. The LC model, for the same
sequence, predicts a strong bias for option B (because that is
the final observed choice in the sequence), which might be
less likely to be overruled by personal information. We note,
however, that this sequence is relatively unlikely to occur
(using each model iteratively to predict the probability of the
sequence, see Methods; p = 0.026 by the SA model, and p =
0.025 by the RA model). For most of the more likely sequences
(larger symbols in figure 2), the computational models give
much higher probabilities that are similar to the strength of
bias in the LC model. There are also several different ways in
which personal information could be combined with the pre-
dictions of the LC model, and we take no position on which
of those is more likely. Our data, in which observers had no
prior experience of the maze, afford no opportunity to test
this aspect of the decision-making process.

Other computationally cheap heuristics exist that animals
could use to make collective decisions. For example, animals
could consider only the last two, or n, choices they observe (a
family of heuristics of which our LC model is the simplest
member; e.g. [12]). The SU model, which considers only the
number of conspecifics at each choice, could also be con-
sidered a heuristic rule as it ignores some of the available
information (the sequence of choices).

It is possible that some detail of our experimental para-
digm, such as the timing between demonstrator choices,
influenced the rule that our test fish used. Demonstrators in
our experiment were spaced about 1 s apart, and the observer
was released about 1 s after the last demonstrator had chosen
an arm of the maze (which, in our maze, did not take very
long). It is possible that increasing the gap in time between
consecutive demonstrators or, more likely, between the
demonstrators and the observer, would change the behaviour
of the observers. That is, following closely on the heels of the
final demonstrator may encourage observers to simply copy
that final choice, rather than integrating the information
they gleaned from observing all the demonstrators. However,
increasing the inter-choice interval might also challenge
observers’ memory, particularly of longer or more varied
demonstrated sequences. We also note that the intervals we
enforced between the fish’s choices were already slightly
longer than those commonly observed in freely moving
groups of fish (e.g. [8]).

Fish, and other animals that make collective decisions,
may convey more information to other members of their
group than simply which option they choose. For example,
animals may communicate their confidence in their choice
[35,36] by their body movements or the speed of their
choice or, in humans, verbally [37]. Collective decision rules
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that take confidence information into account lead to more
accurate choices, at least in humans [37,38]. We did not
measure the choice latencies of our demonstrators or obser-
vers, and cannot gauge the effect, if any, of such additional
information on their choices. As far we are aware, no data
exist on the kinds of behaviours fish might use to communi-
cate confidence or whether they do so. Finally, we also note
that our demonstrators often did not choose the arm they
were trained to go to (electronic supplementary material,
figure S3); it is possible that their swimming on such trials
was somehow different and that this affected how strongly
observers relied on those choices.

In summary, whether fish copy the last choice they
observe or perform a more complex integration of social
information sequences, they do not appear to be using
sequence-independent decision rules, such as those
implemented by the commonly cited SU model [13] or by
quorum rules [9,25,27]. Though the predictions of these
models may be quite similar for most naturally occurring
sequences of choices, because these are rarely strongly
biased, we recommend further research to explore the
consequences of sequence-dependent behavioural choice
mechanisms, and of simple heuristics that may approximate
the same behaviour at a fraction of the computational cost.
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