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Abstract 

Collective behaviors are observed throughout nature, from bacterial colonies to human societies. 

Important theoretical breakthroughs have recently been made in understanding why animals 

produce group behaviors and how they coordinate their activities, build collective structures, and 

make decisions. However, standardized experimental methods to test these findings are lacking. 

Notably, easily and unambiguously determining the membership of a group and the responses of an 

individual within that group is still a challenge. The radial arm maze is presented here as a new 

standardized method to investigate collective exploration and decision-making in animal groups. This 

paradigm gives individuals within animal groups the opportunity to make choices among a set of 

discrete alternatives, and these choices can be easily tracked over long periods of time. We 

demonstrate the usefulness of this paradigm by performing a set of refuge-site selection 

experiments with groups of fish. Using an open-source, robust custom image processing algorithm, 

we automatically count the number of animals in each arm of the maze to identify the majority 

choice. We also propose a new index to quantify the degree of group cohesion in this context.  The 

radial arm maze paradigm provides an easy way to categorize and quantify the choices made by the 

animals. It makes it possible to readily apply the traditional uses of the radial arm maze with single 

animals to the study of animal groups. Moreover, it opens up the possibility of studying questions 

specifically related to collective behaviors. 
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Introduction 

A key question in the study of collective behavior is that of understanding how multiple, possibly 

unrelated, individuals can make efficient consensus decisions despite often possessing incomplete or 

conflicting information. While important theoretical breakthroughs have occurred during the last 15 

years (e.g., Couzin, Krause, franks, & Levin, 2005; Couzin, Ioannou, Demirel, Gross et al., 2011; 

Leonard, Shen, Nabet,  Scardovi, et al.,  2012; Ward Sumpter, Couzin, Hart, & Krause, 2008), there is 

still a lack of standardized experimental methods with which to empirically test these findings. 

Occurring across a wide range of species and ecological contexts, fish schooling is a phenomenon of 

long-lasting interest in ethology and ecology which has also attracted interest from the fields of 

statistical physics and theoretical biology as an example of self-organized behavior (Lopez, Gautrais, 

Couzin, & Theraulaz, 2012). In order to study these dynamic collective processes, it is necessary to 

identify groups and subgroups, as well as to take into account the possible effects of environmental 

heterogeneity on the outcome of the collective behavior. Though shoals and schools have qualitative 

(Pitcher, 1983) and quantitative definitions (Delcourt & Poncin, 2012), determining membership in a 

group, especially using a quantitative method, is still under debate (Miller & Gerlai, 2008, 2011; 

Quera, Beltran, & Dolado, 2011; Quera, Beltran, Givoni, & Dolado, 2013). For instance, in the study of 

fission-fusion processes, it is necessary to determine whether an individual belongs to one group or 

another, or is isolated. We therefore need an approach in which each individual must make a clear 

choice to join, stay with, or leave a group, so that the delimitation of the group is unambiguous.  

In order to achieve these objectives, we propose the use of the radial arm maze as a new 

standardized tool to investigate collective exploration and decision-making. A radial arm maze 

consists of a number of arms radiating away from a central zone (see Fig.1). During a typical 

experimental trial, a single animal is introduced into the central zone (or one of the arms, depending 

on the experimental protocol), and allowed to move freely into one of the arms, thus making an 

easy-to-classify categorical choice. After each choice, the tested animal can return to the central 

zone and select a new arm from the available alternatives (again, depending on the experimental 

protocol and question). This experimental setup allows the animal to sample ς possibly with 

replacement ς from a known set of well-defined alternatives (Olton & Samuelson, 1976; Olton 

Collison, & Werz, 1977). 

Our first contribution in this article is to illustrate how the radial arm maze paradigm can be used for 

the study of collective behaviors for the first time, as it has been previously for single subjects (Olton 

& Samuelson, 1976; Hodges, 1996; Vorhees & William, 2014). Our paradigm permits observing an 

animal group for extended durations, during which the individuals can make numerous successive 
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individual and collective choices without having to be removed from the maze or interact with the 

experimenter in any way, potentially generating a large amount of detailed data. The radial arm 

maze can also be used to explore classic themes, previously studied with solitary animals (spatial 

learning, discrimination of cues, exploratory strategies, or algorithmic behaviors), but can now also 

become a convenient tool to study other phenomena that are specific to social and collective 

behavior (consensus decision-making, fission-fusion dynamics, etc.). 

Figure 1. Left: The 6-arm radial maze seen from above, with zones denoted: arms 1 to 6 and the central zone. 
Middle: Example of automatic counting of the number of fish in each zone. Right: the same image with each 
arm labelled relative to the arm M containing the majority of the fish (n>5). L1, L2, R1, R2, and Op are, 
respectively, the 1st and 2nd arms to the left (L) or to the right (R), or opposite to M. 

 

As an alternative to video multi-tracking, our second purpose is to suggest a simplified way to 

investigate collective exploration and decision-making in animal groups. We propose to characterize 

group behavior by observing the dynamical distribution of the individuals across a structured, 

discrete space. We describe how to simply determine the ƎǊƻǳǇΩǎ ŎƻƘŜǎƛƻƴ ōȅ counting the number 

of fish in each section of the maze. We use majority transitions between arms to characterize 

collective dynamics and introduce a new index to quantify the degree of group cohesion in the 

discrete structure of the radial arm maze. Finally, we demonstrate the use of this methodology by 

performing simple refuge-site selection experiments with groups of fish.  

The proposed approach goes beyond simply reusing an existing paradigm used almost exclusively 

with isolated animals. It introduces quantification and analysis methods specifically crafted for group 

behavior, and therefore offers a new and standardized way to study collective behavior.  

Methodology 

RADIAL ARM MAZE 
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A radial arm maze is usually composed of 3 to 8 arms radiating away from a central zone, though this 

number can be much higher (e.g., 48 arms in Cole & Chappell-Stephenson, 2003). It is a well-

established paradigm in experimental psychology since the pioneering research of Tolman, Ritchie, & 

Kalish (1946) and Olton & Samuelson (1976). It is used in cognitive research to understand 

exploratory behaviors (Olton et al., 1977), algorithmic behaviors (Hughes & Blight, 1999), spatial 

learning (Brown & Giumetti, 2006), social learning (Brown, Prince, & Doyle, 2009), the ability to 

discriminate different types of ς often visual - cues (Colwill, Raymond, Ferreira, & Escudero, 2005), 

learning ability and underlying brain structures (Lopez, Bingman, Rodriguez, Gomez, & Salas, 2000; 

Crusio & Schwegler, 2005), and neurotoxicology (Walsh & Chrobak, 1987; Creson, Woodruff, Ferslew, 

Rasch, & Monaco, 2003).  

Radial arm mazes are used mostly with isolated animals such as rodents, pigs, rabbits, hedgehogs, 

dogs (Wilkie & Slobin, 1983, Lipp, Pleskacheva, Gossweiler, et al., 2001, Macpherson & Roberts, 

2010), a number of bird species (Lipp et al., 2001; Pleskacheva, 2009), and reptilians (Wilkinson, 

Coward, & Hall, 2009; Mueller-Paul, Wilkinson, Hall, & Huber, 2012). Several fish species have also 

been tested in these mazes: Siamese fighting fish Betta splendens (Roitblat, Tham, & Golub, 1982), 

fifteen-spined sticklebacks Spinachia spinachia and corkwing wrasse Crenilabrus melops (Hughes & 

Blight, 1999, 2000), goldfish Carassius auratus (Washizuka & Taniuchi, 2006) and zebrafish Danio 

rerio (Washizuka & Taniuchi, 2007; Al-Imari & Gerlai, 2008; Sison & Gerlai, 2010). However radial arm 

mazes have only rarely been used to test the collective performance of groups of animals (see Brown 

et al. 2009; Miller, Garnier, Hartnett, & Couzin, 2013). In Brown et al. (2009), a pair of rats were 

tested to study social influence on individual choice. In Miller et al. (2013), fish schools were tested in 

repeated trials of short duration, recording only the first choice of the group among three options. 

Here, for the first time we present a study of multiple successive choices of a group in a radial arm 

maze, over an extended period of time, without the animals being removed from the maze between 

choices.  

One of the strengths of the radial arm maze paradigm is that it allows the observer to determine 

without ambiguity that an animal has made a decision by simply recording whether or not the animal 

has entered one of the arms of the maze. We can take advantage of the simplicity of this measure to 

determine the location and size of all the groups in the maze at any time during an experiment.  

TRACKING GROUP DYNAMICS 

During a collective decision-making event, it is important to (1) estimate when the individuals in a 

group have made a decision, and (2) determine the strength of the consensus amongst the 

individuals composing the group. For (1), we propose to simply track the movements of the majority 
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of the group between the different arms of the maze, as a way to significantly simplify the collective 

dynamics (note that other thresholds can be chosen, and that individual movements can be tracked 

as well, depending on the study needs). For (2), we introduce a new cohesion index that measures 

how dispersed the animals are in a discretely partitioned environment, here the radial arm maze. 

Majority transitions 

A majority is reached when half of the individuals plus one are located in a single arm of the maze. 

The central zone is not considered a valid choice for this purpose. When a majority is reached in a 

given arm, we call this arm the άmajority armέ. At any given moment, as long as a majority exists, we 

can define the position of the other arms relative to the majority arm by counting the number of arm 

openings to the left or right of the majority arm. For instance, for a 6-arm radial maze, we label the 

majority arm M, the 1st and 2nd arms to the left (L) or to the right (R) of M, L1, L2, R1, R2, and the arm 

directly opposite to M, Op (Op only exists in mazes with an even number of arms; see Fig.1). This 

classification method can easily be extended to mazes with different numbers of arms.  

A transition of majority is defined as a movement of the majority from a given arm to a different one; 

a transition period is defined as a period of time between the end of a majority (in an arm) and the 

beginning of the next majority (in the same or another arm; Fig.S1). The study of majority transition 

is typically an analysis of the temporal sequence of majority states, without taking into account the 

durations of these states (one majority episode is defined from the beginning to the end of one 

majority in an arm). During transition periods, no majority state is observed. We can also analyze 

second (or higher) order transitions to evaluate potential stereotypic motion patterns (see Figs. S2 & 

S3 for some theoretical examples). A transition of the first order is the direct transition of a majority 

from one arm to another arm; a second order transition consists of two sequential majority 

transitions and records the second next majority arm, and so on for higher orders. For instance, 

second order transitions allow us to determine whether the majority returns to the original majority 

arm after exploring another one (Fig.S3). In some analyses, it could be interesting to filter cases 

where transition has aborted, e.g. one or several individuals have moved into the central zone, 

inducing the loss of the majority, and then returned rapidly to their initial arm, restoring the majority 

at that arm. We therefore define a first-order ΨƳŀƧƻǊƛǘȅ ǘǊŀƴǎƛǘƛƻƴ ǿƛǘƘƻǳǘ ǊŜǇŜǘƛǘƛƻƴΩ, in which we 

ignore first order transitions between the same arm. For higher order transitions, repetitive identical 

majorit ies (i.e., consecutive majorities in the same arm) are considered as a single element in the 

state sequence (see Fig.S2). For example, the second order transition in the sequence A-B-B-C is A-C. 

A new cohesion index for the radial maze  
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We propose a new cohesion index, Ic, that measures the ability of animals to form cohesive groups in 

a radial maze. We created Ic for radial arm mazes, but it can also be applied to other types of mazes 

or arenas divided into discrete zones. This index is an alternative to traditional methods for 

measuring group cohesion based on the relative topological or metric locations of the individuals 

composing the group (reviewed in Delcourt & Poncin, 2012). These traditional measures are well 

adapted to homogenous open-field arenas but make little sense in more structured environments 

such as radial mazes. For instance, two individuals located in two contiguous arms of a radial maze 

can be close to each other without being able to directly perceive or interact with each other. Many 

natural environments contain barriers or other impediments to movement which impose a structure 

(that the radial maze may simulate), making our method potentially more useful than traditional 

measures even in the wild. 

We define Dc as the Euclidean distance (norm of the resultant vector) in a multidimensional space 

between the numbers fi of individuals in each zone of the maze (arms + central zone). All variables 

(dimensions) are considered independently from each other. 

╓╒ В Ὢό╝
░         (1) 

Dc varies as a function of the partition of the number of fish. This partition is dependent on the total 

number of individuals, N, and the number of zones, Z (see Supplementary Table 1 in appendix S1). 

Partition, composition, and the number of possible partitions are described in detail in Appendix S1. 

Dmin is the value of Dc for the least cohesive configuration possible (i.e., the most homogeneous 

distribution of the animals across the possible zones). For instance, for ten individuals with ten zones, 

Dmin = Ѝρπ. However, if the number of zones is less than N, Dmin is larger. For instance, for ten 

individuals in 7 zones, Dmin = Ѝρφ for the partition 2/2/2/1/1/1/1 , which corresponds to the most 

homogeneous distribution of the animals in this case.  

The cohesion index Ic is computed as follows: 

 Ὅ
╓╒ ╓□░▪

╝ ╓□░▪
         (2) 

Ic varies between 0 and 1, increasing as the number of occupied zones decreases and the groups are 

larger. For instance, Ic = 0.46 for the partition 6/3/1 whereas Ic = 0.44 for the partition 6/2/2. When 

all individuals are located in one zone, Dc = N, so Ic = 1. Ic = 0 when the group is as dispersed as 

possible. Ic cannot be calculated if there is just one zone.  
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The R code details and more examples to calculate partitions, Dc, Dmin, and Ic are presented in 

Appendix S1.  

CASE STUDY 

Study species  

We performed a series of simple resting-site selection experiments in order to demonstrate the 

usefulness of the radial arm maze paradigm for the study of animal groups. For these experiments, 

we used golden shiners (Notemigonus crysoleucas, Cyprinidae), a highly gregarious fish species 

(Couzin et al., 2011; Katz, Ioannou, Tunstrom, Huepe, & Couzin, 2011; Berdahl, Torney, Ioannou, 

Faria, & Couzin, 2013; Tunstrom,  Katz, Ioannou, Huepe, Lutz, & Couzin, 2013) native to the 

freshwaters of eastern North America. This fish is regularly used in collective behavior studies to 

investigate collective decision-making processes (Reebs 2000, 2001, Leblond & Reebs, 2006, Couzin 

et al. 2011, Berdahl et al., 2013; Miller et al. 2013). Juvenile shiners (average length approximately 5 

cm) were purchased from I. F. Anderson Farms (www.andersonminnows.com) and housed in an 

environmentally controlled laboratory for over 2 months before the start of the experiment. The fish 

lived in 75-liter tanks at a density of approximately 150 fish per tank in dechlorinated, conditioned, 

oxygenated, and continuously filtered and recycled fresh water. Ambient temperature was 

maintained at 16°C and the photoperiod was 14Ḋ10 lightḊdark. The fish were fed three times a day ad 

libitum with crushed flake food and experiments were conducted 2 hours after feeding. All 

experimental procedures were approved by the Princeton University Institutional Animal Care and 

Use Committee. 

Experimental setup 

We used a 6-arm radial maze with a regular hexagonal central zone (see Fig.1). The side length of this 

hexagon was 23 cm; the dimensions of each arm were 42  20  20cm (length  width  height). 

The walls were made of 1.5 cm thick white PVC boards. Note that other designs are possible, with 

different dimensions and a different number of arms that would depend on the research question. 

The maze was placed inside a larger tank (2.1  1.2 m) partially filled with water (10 cm deep) and 

weighted down with bags of gravel attached outside the end of each arm. A 1 cm thick layer of gravel 

was deposited at the bottom of the maze. When no trial was running, water in the tank was 

constantly filtered by four aquarium pumps and filters. The pumps were turned off during trials to 

prevent water movements from influencing the behavior of the fish. Water temperature and pH 

were adjusted before each trial to match those of the housing tanks. For this simple experiment, 
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aimed at demonstrating the usefulness of radial arm mazes for studying collective behaviors, all the 

arms were kept open and empty at all times.  

Trials were recorded using a Sony XDCAM EX HD camera (image resolution: 1920  1080 pixels) 

whose field of view covered the entirety of the maze. At the beginning of each trial, the fish were 

placed inside an opaque, movable ring in the central zone to prevent them from visually exploring 

the maze before the start of a trial. They were left in the ring to habituate for a period of 10 minutes. 

A trial started when the opaque ring was slowly raised and removed from the tank using a system of 

transparent fishing lines and pulleys.  

First, we performed several 1 hour long trials using groups of 5, 10 and 20 fish, to compare our 

automated counting system (see below) to human coders. Second, to validate the use of our study 

parameters (i.e., majority determination and transitions, indices of cohesion), nine trials were run for 

a duration of 12 hours each using groups of ten fish each (a tenth trial was unusable due to a 

technical problem during video recording). All trials were recorded at a frequency of 1 image per 

second. Upon completion of a trial, the fish were returned to their housing tanks. 

Automated Image Processing 

Calculating majority transitions and the cohesion index, Ic only requires knowing the number of 

individuals in each section of the maze. If the number of observations required is small, this can be 

easily done manually. However, if the number of observations is large, considerable speed gains in 

data collection can be achieved through automating the counting process. If the individuals are close 

enough in space between successive observations (typically if an animal cannot move more than half 

its body length between two observations ς Turchin, 1998), it is possible to use one of the many 

multi-tracking programs available on the market, such as CTRAX (Branson, Robie, Bender et al., 

2008), idTracker (Pérez-Escudero, Vicente-Page, Hinz, Arganda, & de Polavieja, 2014), or SwisTrack 

(Correll, Sempo, Lopez de Meneses et al., 2006). However, this option is often limited to relatively 

short observation periods (typically no longer than an hour) as the computing time increases rapidly 

for the analysis of high frequency, high definition video recordings. 

For the present study, we chose to rely instead on high definition, low frequency recordings (1 

observation per second) that allowed us to run observations over several hours and that could be 

automatically processed in a matter of minutes. We developed a simple and robust computer vision 

algorithm in order to estimate automatically the number of individuals in each section of the radial 

maze (the central region and each of the arms). This algorithm was implemented using Matlab 

R2015a and its associated Image Processing Toolbox (Version 9.2). The code is available under the 
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open source GNU General Public License v3.0 at the following address: 

https://github.com/sjmgarnier/projectRadial. Below are the different steps of the image 

processing algorithm that result in the automated estimation of the number of individuals in each 

section of the radial maze:  

1. Software setup: the user indicates the location of the video file, as well as the total number 

of fish used during the trial, the number of arms of the maze, and the desired sampling rate if 

different from the video framerate.  

2. Maze detection: the user indicates the location of the 4 corners of each arm, starting from 

any arm (which will be then labelled arm 1) and moving clockwise from there. The area 

between the arms will be automatically labelled as the central (or starting) area.  

3. Background image: a background image is generated by averaging 100 images taken at 

regular intervals along the video. In general, using a median image would have resulted in a 

better approximation of the background image than by averaging. However, it would have 

required a considerably larger amount of memory, and it did not prove necessary, at least in 

our setup.  

4. Presence detection: the background image is subtracted from each image in the video. The 

local contrast of the resulting difference image is then adjusted to balance the low contrast 

parts of the original image (e.g., in shaded areas where dark animals are less visible) with the 

high contrast parts (e.g., in well-lit areas where dark animals are more visible). This is done 

by multiplying the difference image by the inverse of the background image raised to a user-

determined power. Noise in the contrast-adjusted, difference image is reduced using a 3-

pixel uniform disk filter. Finally, a user-determined threshold is applied to the resulting 

image. Pixels whose values are higher than the threshold are set to 1 (an animal is present), 

the others are set to 0 (no animal).  

5. Blob size and location: non-ȊŜǊƻ ǇƛȄŜƭǎ ŀǊŜ ǘƘŜƴ ƎǊƻǳǇŜŘ ƛƴǘƻ άōƭƻōǎέΣ ǘƘŀǘ ƛǎ ŎƻƴǘƛƎǳƻǳǎ ƴƻƴ-

zero regions of the image resulting from step 4. The coordinates (x, y) of the blobs in the 

maze are determined by their respective centers of mass (i.e., average coordinates of all 

pixels belonging to a blob). In order to determine the likely number Bi of animals represented 

in each blob i, the number p of pixels covered by a single fish is estimated as the total 

number of non-zero pixels divided by the total number N of animals present in the radial 

maze (information provided by the user at the beginning of the counting process). The 

number Mi of animals in each blob i is computed as Ti ς the number of pixels in each blob 

divided by p ς rounded down to the closest integer. If Вὓ ὔ, the differences Di between 

each Ti and each Mi are computed and ordered from highest to lowest. The number Mi 

https://github.com/sjmgarnier/projectRadial
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corresponding to the higher Di is then increased by one unit, and this process repeats for all 

subsequent ordered Di values until Вὓ ὔ.  

Note that this algorithm (and the provided Matlab implementation) should work well with other 

maze sizes, numbers of arms, and animal species, provided that (1) the entire maze is visible in the 

video, and (2) the floor of the maze has a fairly uniform coloring and contrasts well with the color of 

the animals. 

A blob was determined to be in a particular zone (one of the arms or the central zone) of the maze if 

its center of mass was located within the polygon delimiting that zone, even if a blob extended across 

the demarcation line between the central zone and one of the arms (for instance when a fish was 

transitioning from one zone to the other). Finally, we simply considered that two (or more) 

individuals belonged to the same group if they were present in the same zone at a given time. Each 

group size was therefore defined as the number of individuals in each particular zone of the maze. 

Note that this method of determining group membership and size is generally reliable, except when 

large groups are transitioning between two zones in the maze, in which case a group can potentially 

span several zones simultaneously. However, such events are usually short-lived and their unique 

signature can actually be used to detect, automatically, when groups are moving between zones. 

Note as well that the error rate of the algorithm is likely to increase if the individuals in the group 

have very different sizes. If this is the case, we recommend using more sophisticated computer vision 

algorithms (for instance algorithms trained to detect particular shapes regardless of their size; e.g., 

Qian, Cheng & Chen, 2014; Wang, Cheng, Qian et al., 2016) or tagging the animals with unique 

markers that can be detected individually (e.g. Delcourt, Ylieff, Bolliet, Poncin & Bardonnet, 2011). 

For the purpose of this study ς which is to demonstrate how radial arm mazes can be used to study 

collective behavior and not demonstrating a new tracking method ς we used fish of approximately 

the same size.  

Validation of the automated counting system 

In order to evaluate the precision of our automated counting algorithm, we selected 10 test images 

at random from each of the 18 videos of the exploration experiments we performed (180 images in 

total). Approximately 15 human counters ς since counts were performed using an anonymous web 

application, it was not possible to accurately track the identity of each human counter ς were asked 

to count the number of fish in each zone of the radial arm maze. The human counters were aware of 

the total number of fish in the maze in each case (details of the instructions given to the human 

counters can be found in Appendix S2). Images shown to the human counters were selected pseudo-
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randomly from the pool of 180 test images: images that had been scored more often by chance were 

subsequently less likely to be displayed again, whereas images that had been scored less often were 

more likely to be displayed again. Each human counter performed different numbers of counts, and a 

given human counter may potentially have performed counts for the same image several times, but 

without being informed of this. All images were manually counted a minimum of 8 times and a 

maximum of 20, with a median count number of 13 (see Fig.S4). For each maze zone in each image, 

we considered that human counters reached a consensus if at least 75% of them agreed on the 

number of fish present in that zone. 

DATA ANALYSIS 

Statistics and graphs were performed in R (version 3.3.3; www.r-project.org). An accompanying R 

package (projectRadial; https://github.com/sjmgarnier/projectRadial) was developed to facilitate 

the calculation of Ic (see Appendix S1 for details on the installation of the package and details on the 

calculation process). This package depends on the partitions package (version 1.9-18; R.K.S. Hankin, 

2006, 2007). Flux diagrams were realized in R using the qgraph package (version 1.4.2; Epskamp, 

Cramer, Waldorp, Schmittmann, & Borsboom, 2012).  

Results 

VALIDATION OF THE AUTOMATED COUNTING SYSTEM 

Figure 2a shows the proportion of times the human counters reached a consensus for each zone, as 

well as for all the zones, in a given image. Overall, a consensus was observed in more than 95% of 

cases. No significant difference was observed between arms ό˔ч Ґ лΦлтΤ ŘŦ Ґ рΤ Ǉ ҐлΦффύ, with a 

consensus in 97-99% of cases. However, in the central zone, human counters were less likely to reach 

consensus (90%). This is due to the organization of the maze: human counters were most likely to 

disagree with each other if 1 or more fish were situated on the demarcation line between two zones. 

Therefore, they were 6 times more likely to disagree on the number of fish in the central zone, as it is 

directly connected to 6 other zones (the 6 arms of the maze), while each arm is only connected to 

one other zone (the central zone). Overall, human counters agreed on all zones at the same time in 

89% of the cases. 

Taking into account cases with full consensus only, Figure 2b shows a comparison of the performance 

of the automated counting algorithm and the consensus counts obtained by human counters. The 

proportion of times where the computer counts are in agreement with the consensus counts for 

each zone is always superior to 95% for the maze arms. The agreement is slightly less strong for the 

http://www.r-project.org)/
https://github.com/sjmgarnier/projectRadial)
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central zone (94.4%) for the reasons explained above. The proportion of times where they agree for 

all zones at once is 89.4%. 

     (a)        (b) 

Figure 2. (a) Proportion of times a 75% consensus was reached between the human counters for each zone in 
the radial arm maze (first 7 bars) and the proportion of times a 75% consensus was reached for all the locations 
at once (final bar). (b) Proportion of times the automated counting software was in agreement with the 
consensus counts reached by human counters for each location in the radial arm maze (first 7 bars) and the 
proportion of times it was in agreement for all the locations at once (final bar). Broken lines indicate the 
threshold value of 0.95.  

 

MAJORITY TRACKING AND IC 

Figure 3 shows a typical example of a 12-hour trial with a group of ten fish. Periods of time where a 

majority is achieved in one of the zones are highlighted (using a different color for each arm). The 

two zoomed-in time sequences detail the relationship between the size of the largest group (in an 

arm) and the periods with or without a majority. 

From this example (see also Fig.S5), it seems that majority transitions are more frequent between 

adjacent arms. This is clearly illustrated in the flow diagram in Figure 4a which shows that first order 

transitions are more likely to occur between adjacent arms. Figure 4c shows the same information, 

normalized to the position of the majority arm before the transition occurs. Figure 4a confirms that 

the group majority explored all the available arms during the 12 hours of the trial and that all 

possible first and second order majority transitions were observed at least once during that period. 

Figure 4c confirms that the more frequent direct majority transitions are between an arm and one of 

the two adjacent arms. Transitions between an arm and itself are also frequent. Finally, Figures 4b 

and 4d show that second order transitions are usually the consequence of two successive first order 

transitions toward the adjacent arms: the most frequently observed transitions are either a direct 

return to the previous majority arm (M to L1/R1 to M) or to the second next arms (M to L1 to L2 or M 

to R1 to R2). 
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Figure 3. (a) Complete trial example of majority transitions with details of two periods within the trial. The 
group size was ten fish, and the sequence lasts 12 hours. (a) Example of a sequence of 12 hours illustrating 
periods with and without majority. Each vertical colored bar shows a period during which there was a majority 
in a specific arm (n җ сύΤ ǘƘŜ ŎƻƭƻǊ ƛƴŘƛŎŀǘŜǎ ǿƘƛŎƘ ŀǊƳΣ ŀōǎŜƴŎŜ ƻŦ ŎƻƭƻǊ ƛƴŘƛŎŀǘŜǎ ŀ ǇŜǊƛƻŘ ǿƛǘƘƻǳǘ ƳŀƧƻǊƛǘȅ ƛƴ 
an arm. (b) Details of two sequences of two hours each (top, the first two hours; bottom, hours 8 to 10 of the 
experimental trial), with the relationship between maximal group size observed in the maze arms (the central 
zone is not included) and periods with and without majority. 

Figure 4. Upper panels: Examples of majority 
transition diagrams for a group of ten fish 
during 12 hours: (a) Majority transitions of the 
first order (n = 186); (b) majority transitions of 
the second order (n = 185). Lower panels: 
Diagrams of majority transitions between 
relative arms (relative to the current majority 
arm, M) for the same video sequence: (c) 
transitions of the first order (n =186); (d) 
transitions of the second order without 
repetition (i.e., excluding leaving and returning 
to the same arm during first order transitions; n 
=147). The thickness of the arrows is 
proportional to the maximum observed value in 
each diagram. 

 

 

Figure 5a shows Ic as a function of time in a typical trial with a group of ten fish. Cohesion was low at 

the beginning of the trial when the fish had just been released from the central zone and started 

exploring the maze. It then increased during the first hour and remained high for the rest of the trial, 

dropping momentarily every time the group changed location in the maze.  

Figure 5b shows the mean value of Ic, based on nine groups of ten fish each, as a function of time. As 

exemplified in Figure 5a, mean Ic values are very low in the beginning of an experiment, and grow 

and stabilize after the first hour. Figure 5c shows this progression during just the first hour of the 
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experiment, with a rapid increase in cohesion during the first 12 minutes (fish associating rapidly 

with one or two partners), followed by a slower increase corresponding to the build-up of a majority.  

(a)

(b)               (c) 

Figure 5. (a) Example of our cohesion index, Ic, as a function of time in a group of ten fish during a 12 hour 
session. The orange dotted line is the minimal value of Ic (= 0.39) where a majority can be observed 
(corresponding to a partition of 6/1/1/1/1) and the green dotted line is the maximal value of Ic (= 0.51) where 
no majority can be observed (a partition of 5/5). Whenever the data are situated between these two values a 
transition of majority can be observed; each time the data fall under the orange line, a transition of majority is 
observed with certainty. (b, c) Mean value of Ic as a function of time based on nine groups of ten fish each. (b) 
During the 12 hours of the experiment, note the lower values during the first hour. (c) Detail of the first hour of 
the experiment; note two different profiles in the increase in Ic, before (very rapid increase) and after 12 
minutes (moderate increase). The broken vertical line indicates 12 minutes from the start of the session. 

 

Figure 6a shows that a group majority in one of the arms is less likely to be reached during the first 

30 minutes of a trial and, when achieved, it changes arm more frequently during the first hour than 

during the rest of the trial. The number of majority transitions is also much more frequent during the 

first hour (Fig.6b). These observations indicate that the first hour is a more unstable period, with 

more exploration taking place in small groups. Group cohesion is more stable during the rest of the 

12-hour period. However, exploration does not stop and is instead performed as a cohesive group. 
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Discussion 

USING RADIAL ARM MAZES TO STUDY COLLECTIVE BEHAVIOR 

Radial arm mazes have been traditionally used for research on individual cognition. In this paper, we 

propose using them to study social cognition and collective behaviors. We illustrate our proposal 

with a proof-of-concept experiment looking at the collective exploration behavior of fish shoals. With 

the exception of Brown et al. (2009), where two rats were placed together in a radial maze, we do 

not know of any case where the radial arm maze paradigm was used to study collective behaviors, in 

particular in large groups.  

(a) 

 

(b) 

  

Figure 6. (a) Mean (±SE) percentage of time when a majority was observed in any arm, binned into periods of 
30 minutes for an entire 12 hour session for nine groups of ten fish each. (b) Mean (±SE) frequencies of 
majority transitions as a function of time. 

 

The central principle of this paradigm is to allow tested animals to sample multiple discrete options, 

with or without replacement. After each visit to an arm of the maze (i.e., a discrete choice), the 

animals are not disturbed by experimenters; they can return to the central zone and make a new 

choice. Because the options are discrete, it is easy to categorize and quantify the choices made by 

the animals.  
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All the traditional uses of the radial arm maze paradigm with single animals can be applied to study 

animal groups (Table 1). For instance, we can use this paradigm to test group preferences and the 

way individual preferences may be modified in a group context. These are likely to be different from 

the preferences of isolated individuals, as group living is known to modify individual patterns of 

exploration and exploitation of the environment (Sumpter, 2010). In a group, an individual may be 

able to react sooner or more strongly to subtle differences in the environment thanks to the many-

eyes effect; it might also be more likely to find the best resources (Berdahl et al., 2013). The radial 

arm maze paradigm is also used to study how isolated individuals resolve conflicts between bits of 

information they possess about the different parts of the maze. This can be extended to study 

conflicts during collective decision-making, when group members possess different information, for 

example (Couzin et al., 2011; Miller et al., 2013). Spatial exploratory behaviors, notably stereotypic 

motion schemes (i.e., algorithmic behaviors), can also be studied at the group level using this 

paradigm.  

Table 1. Some applications of radial mazes to study group behaviors. Moreover, testing a group 
allows the investigation of a series of new questions. 

Traditional applications but now at the group scale New applications 

exploratory behaviors fission/fusion processes 

algorithmic behaviors self-organization processes 

choice experiments interactions between the individual and group levels 

discrimination of cues collective decision-making processes 

spatial learning interactions between individual and social information 

 group memory phenomena 

 social learning 

 impacts of social status 

The radial arm maze can also be used to study questions that are specific to group behaviors (Table 

1). ¢ƘŜ ŘƛǎŎǊŜǘŜ ƴŀǘǳǊŜ ƻŦ ŜŀŎƘ ŀƴƛƳŀƭΩǎ ŎƘƻƛŎŜǎ in this setup makes it easy to assign each animal to a 

specific group. This makes the radial arm maze paradigm ideal for studying fission-fusion dynamics in 

animal groups in the context of constrained physical environments, for instance. It can also be used 

to study most typical social phenomena, such as collective decision-making, sharing or transmission 

of information, collaboration, competition, social status establishment, and social learning. In 

addition, the contents of each arm can be modified independently of the other arms, making it 

possible to study the effects of environmental heterogeneities on the behavior of the group and of 

its members. Such heterogeneities are known to have a major impact on animal decision-making and 

to directly affect the dynamics of group formation (Bode & Delcourt, 2013, Delcourt, Bode, & Denoël, 

2016). 
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If the studied species is not highly gregarious and/or if the number of arms (or zones) is large, it is 

possible that a majority in any zone will be rarer. The quantification of majority states, majority 

transitions, and cohesion indices are useful information about the degree of gregariousness of the 

individuals, notably to test how different factors (e.g., physiological states, ratio of bold and shy 

individuals, species, or time of day) influence cohesion in the maze. Moreover, such studies could be 

used to explore, in weakly cohesive or non-social species, whether each individual moves completely 

independently of others, or tends to avoid them. The distribution of individuals across different 

discrete zones can be informative in this respect. Individuals tending to avoid others will be more 

homogeneously spread than is predicted by chance. Individuals that are simply ignoring others in 

their individual choices will be dispersed across different zones following a probability distribution of 

combination laws (which can be modified to take into account individual preferences, if necessary). A 

social species will be significantly less dispersed than predicted by combination laws. The comparison 

of these predicted distributions to the observed distribution can be used as a test to demonstrate the 

degree of social tendency in a species. 

The radial arm maze paradigm presents several other advantages for the study of collective behavior: 

1) it is easy to set up; 2) it can be applied to most social species, aquatic or not; 3) guillotine doors 

can be placed at the entrance to each arm to temporarily or permanently restrict the number of 

options (Miller et al., 2013); 4) long periods of experimentation can be carried out without having to 

remove individuals from the arena between choices, thereby minimizing manipulation-induced 

stress. 

LIMITATIONS OF THE METHOD 

In a radial arm maze, two fish located in different zones are not necessary completely disconnected 

from each other, or unable to interact. For example, a fish might be able to perceive by olfaction that 

another individual was present in a particular arm recently (Sorensen & Wisenden, 2014). Such 

detections, in addition to other cues (e.g., the presence of feces), can influence the probability that 

an individual will stay or leave that arm. More direct interactions are also possible. Fish can perceive 

conspecifics by vision and by their lateral line (Pitcher & Partridge, 1980). Vision is most important 

for long-distance interaction, for maintaining group cohesion by attraction (for instance for joining a 

group or avoiding being isolated from a group). The lateral line is most important for repulsion in 

short-distance interaction, to avoid collisions and to provide information about the speed and 

direction of near neighbors (Partridge, 1982). In our experimental setup, a fish located in an arm can 

visually perceive a fish in the opposite arm, but this is less likely for other arms, where the walls of 

the maze will generally interfere. If the lateral line sense is more adapted for short-distance 
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perception (Yang et al., 2006, Mogdans & Bleckmann, 2012), perception of vibration or infrasound 

produced by another individual might be transmitted at some distance as an imprecise cue. 

Reflection by the walls of the maze and the attenuation of this signal with the cube of the distance 

(Pitcher & Partridge, 1980) make this mode of interaction probably quite inefficient at larger 

distances. Nevertheless, some of these sensory modalities can be blocked by the structure of the 

maze, some not, offering an opportunity to explore the respective role of different perceptual 

modalities in the individual decision to join or leave a group or a zone. For example, it is possible to 

construct a radial maze from transparent plastic, in which case visual cues would not prevent 

detection of conspecifics in adjacent arms, but mechanosensory cues would still be blocked.  

The design of a radial maze must take into account the body size and number of individuals used. 

Trivially, it is important for fish to have sufficient space to make individual and collective choices. We 

suggest that the experimental setup must be at least large enough so that the entire group can 

comfortably fit in one arm. 

MEASURING COLLECTIVE BEHAVIOUR IN THE RADIAL ARM MAZE 

Measuring the collective dynamics of animal groups is made simpler by the discretization of space 

offered by the radial arm maze. As we demonstrated in our proof-of-concept experiment, it is not 

necessary in this setup to extract each aniƳŀƭΩǎ ǘǊŀƧŜŎǘƻǊȅ (Delcourt, Denoël, Ylieff, & Poncin, 2013) 

or to determine the identity of each individual (Pérez-Escudero et al., 2014) in order to identify 

dynamic social processes at the scale of the group. Instead we resorted to simply counting the 

number of individuals in each section of the maze, a process that can easily be automated, as 

demonstrated by the image processing software provided with this paper and which we validated 

against human counters. Therefore, it is possible with this paradigm to run and analyze very long 

experiments (the experiments in our study lasted 12 hours and were recorded at 1 frame per second) 

without requiring exceptional computing resources. Obviously, not having access to individual 

identities of each member of the group will limit this counting method to answering questions about 

the collective dynamics of the group. However, in cases where individual identities are necessary, 

more advanced tracking tools (e.g., Pérez-Escudero et al., 2014) can be combined with the radial arm 

maze setup to determine where each individual is exactly located in the maze.  

The counting data that we collected allowed us to determine the distribution of group sizes as a 

function of time as well as the presence of majority choices at any point during each experiment. As 

illustrated in Figure 4, it is easy to analyze and visualize the sequence of choices made by the group 

ōȅ ŎŀƭŎǳƭŀǘƛƴƎ ǘƘŜ ǘǊŀƴǎƛǘƛƻƴ ƳŀǘǊƛȄ ŀƴŘ ŘƛŀƎǊŀƳ ƻŦ ǘƘŜ ƎǊƻǳǇ ƳŀƧƻǊƛǘȅ ōŜǘǿŜŜƴ ŜŀŎƘ ƻŦ ǘƘŜ ƳŀȊŜΩǎ 

arms. This is a convenient way to detect the existence of algorithmic behaviors (stereotyped 
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movement patterns, generally dependent on only the immediately previous choice; Roitblat et al., 

1982; Hughes & Blight, 1999) and to have a metric against which to compare predictions of models 

and computer simulations, for instance. 

Group cohesion ς one of the most important characteristics of group behavior ς is usually evaluated 

based on the relative locations of the group members (e.g., using nearest-neighbour distance, the 

Clark-Evans Index, dispersion indexes, G function, or compactness; see Delcourt & Poncin, 2012, for a 

review). These metrics cannot be used easily in structured spaces, such as the radial arm maze or 

many natural environments, where individuals can be close to each other but unable to interact 

directly because of barriers between them. We propose a new index to measure group cohesion in a 

structured space. Denoted Ic, this index quantifies the degree of cohesion, taking into account the 

number of groups, their respective size, and their distribution in the various zones of the space. Our 

cohesion index varies between 0 and 1 and is based on the number of individuals in each zone only, 

without taking into account the relative positions of the individuals. This parameter is also corrected 

to normalize the effect of the total number of individuals and zones in the space, and so could be 

used to compare the cohesion of groups of different sizes in different spaces. We have not 

conducted here experiments to study the impact of heterogeneity and cannot know what effect its 

variation might have on behavior. We can speculate that, in a heterogeneous environment, cohesion 

could be affected in two opposite ways. In more heterogeneous environments, individuals may be 

more likely to lose sight of conspecifics, which might increase group fission and Ic could decrease. 

However, groups may choose to spend longer in zones with more in them (such as plants that offer 

shelter for instance), which might also be reinforced by social facilitation. This would serve to 

increase the cohesion and Ic. 

Conclusions 

We have proposed a new standardized tool to investigate collective exploration and decision-making 

which makes it possible to study group cohesion (the degree of aggregation) and the motion of the 

majority, two of the most important characteristics in collective behavior. As classical parameters 

dedicated to the measurement of degree of cohesion are not well adapted for the radial maze, a new 

cohesion index was developed which takes into account the number of groups and their respective 

size. This cohesion index is normalized, allowing for comparisons between groups of different sizes, 

and allows for the comparison of cohesion between mazes with different numbers of arms or zones. 

In a proof-of-concept experiment with Golden shiners, we demonstrated the potential of this new 

method (radial maze + animal group + counting system), without the need for tagging the fish, 

tracking, or identifying individuals, simply by automatically counting the number of individuals in 
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each defined zone. The performance of our counting system compares well to human scorers. The 

possibility for animal groups to make a large number of successive choices, each time via the central 

part of the maze, makes possible long duration experiments without the intervention of the 

experimenter, eliminating a significant source of stress which could affect the results. In Appendix S1, 

we present tools to calculate partition, combination of partitions, number of partitions, Dmin, and Ic. 
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Supplementary Figures 

Figure S1 

 

Illustration of transitions of majority. (a) Transition of the majority between arm 1 and arm 3. A 
majority is observed until time t1 in arm 1, a new majority group is observed in arm 3 from time t3. 
Between the times t1 and t3, no majority is observed in any arm (the central zone is not considered). 
The period of transition between two successive majority periods (and its duration) is defined as 
being between t1 and t3. (b) Theoretical case where, after a majority period (here in arm 1 in time t1), 
individuals move into different arms without achieving a new majority state (at time t2 in this 
example). A new majority is achieved at time t3 after reunification of two small groups coming from 
arms 3 and 4. Note, in this example, that the new majority does not involve all the individuals of the 
ǇǊŜǾƛƻǳǎ ƳŀƧƻǊƛǘȅΣ ƻƴŜ ƛƴŘƛǾƛŘǳŀƭ ǊŜƳŀƛƴƛƴƎ ƛƴ ŀǊƳ рΦ άaέ ƛƴŘƛŎŀǘŜǎ ǘƘŜ άƳŀƧƻǊƛǘȅ ŀǊƳέΦ {ŜŜ CƛƎΦм for 
definition of arm number and majority arm. 

 

  



28 
 

Figure S2 

 

Theoretical example illustrating the concept of different types of majority transition. Upper panel: a 
timeline with periods of majority, M (indicated by color blocks; each color corresponds to a specific 
arm), alternating with periods of no majority, NM (uncolored blocks). The state sequence of 
observed majority is the sequence of arm identities (indicated by upper-case letters) where a 
majority is successively observed. The duration of the majority state is not taken into account. This 
sequence constitutes the first order transitions of majority. Second order transitions of majority 
indicate the sequence of transitions between a majority and the second-next majority achieved (in 
time). Majority transition without repetition is defined to filter cases where transition has aborted, 
and is based on only the first order transition: the first order transitions between two successive 
identical arms are ignored. For higher order transition, repetitive identical majority are considered as 
only one element in the state sequence. 
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Figure S3 

  

Several theoretical examples of stereotypic motion patterns (algorithmic behaviors) with 
corresponding majority transition diagrams for first and second order transitions. The numbers are 
the expected percentage of choice of the majority for each majority transition (and underlined also 
by the thickness of the transition arrows). (a) case where the majority of the group always chooses 
the next arm to the left; (b) case where the majority oscillates between only two arms; (c) case of a 
άǎǘŀǊέ ǇŀǘǘŜǊƴ ǿƘŜǊŜ ǘƘŜ ƳŀƧƻǊƛǘȅ ƳƻǾŜǎ ŦǊƻƳ ƻƴŜ ǇŀǊǘƛŎǳƭŀǊ ŀǊƳ ǘƻ ŀƴȅ ƻǘƘŜǊ ŀǊm, and returns 
immediately afterwards to the initial majority arm; (d) case in which the majority moves only into the 
adjacent left or right arm. 
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Figure S4 

 

Distribution of the number of scorings performed by human counters on each of the 180 test images. 
The dotted line is the median of the distribution. 
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Figure S5 

  

Example of a sequence of 30 minutes, illustrating the relationship between maximal group size 
observed in the maze arms (the central zone is not included) and periods with and without majority. 
The group size was ten fish. Each vertical colored bar shows a period during which there was a 
majority in a specific arm; the color indicates which arm. Between each period of majority is a period 
of transition during which there was no majority in any arm (n < 6; uncolored gaps). The dotted line is 
ǘƘŜ ƳƛƴƛƳǳƳ ƎǊƻǳǇ ǎƛȊŜ ǊŜǉǳƛǊŜŘ ǘƻ ƻōǘŀƛƴ ŀ ƳŀƧƻǊƛǘȅ ƛƴ ŀƴ ŀǊƳ όƴ җ сύΣ ƛƴŘŜǇŜƴŘŜƴǘ ƻŦ ǘƘŜ ŎŜƴǘǊŀƭ 
zone. 

  


